
Computerized fault tree construction for
improved reliability analysis

A. Majdara & T. Wakabayashi
Department of Management Science and Technology,
Graduate School of Engineering, Tohoku University, Japan

Abstract

Fault Tree Analysis is a well-known method for reliability evaluation of systems.
However, manual construction of fault trees is a tedious and time-consuming
task. Thus, many researchers tried to get benefit of high speed and accuracy of
digital computers to automate this process. Automated construction of fault trees
can be very useful in system reliability analysis, especially in design step, where
we need to choose the most reliable design out of several design options.
 In this paper we will present the computer code we have developed for
automated fault tree generation. The program is actually the implementation of
an approach we have developed for algorithmic construction of fault trees. The
main part of this approach is a component-based method for system modeling. In
this method, a system is modeled as a set of components connected to each other.
Every component is described in a function table. This modeling approach is
capable of modeling a wide range of devices and concepts in different types of
systems. The model prepared in this part is then used as an input to the “fault tree
synthesis algorithm”, and the result is the fault tree for the specified top event. A
case study is done for a part of a UAV system. The results generated by the
program are compared with the manually constructed fault trees.
Keywords: fault tree, computer-aided fault tree construction, component-based
modeling, function table, state transition table, trace-back algorithm.

1 Introduction

A fault tree is a graphical representation of the various combinations of faults
and failures that will result in an undesired event, which is called top event [1–
3]. Since manual construction of fault trees is tedious and time consuming and it

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

doi:10.2495/RISK100141

Risk Analysis VII PI-149

is vulnerable to human mistakes, there have been interests in computerizing this
task [4–13]. Automating the fault tree construction process can make it faster and
easier. Also, computer-aided fault tree generation, if implemented appropriately,
will have fewer systematic errors than the manual approach.
 Generally, any automated approach for fault tree construction can be
considered as having two phases: First, system modeling; and second, fault tree
synthesis. The challenging part is the first phase, in which the system under
study should be modeled appropriately without ignoring any necessary details.
Also, the system model must be suitable for being used by an automated
procedure, in the second step.
 Various modeling approaches are utilized by different researchers. Some of
the most commonly used approaches are digraphs [4–6], decision tables [7–9],
and state diagrams [10, 11]. Kumamoto and Henley proposed a semantic
network modeling approach [12]. Papadopoulos et al. used Matlab–Simulink
models for model-based synthesis of fault trees [13].
 We have developed an improved methodology for computer-aided fault tree
construction, which consists of a component-based approach for system
modeling and a trace-back algorithm for fault tree synthesis. The approach is
then implemented as a computer program which can receive the system model as
an input and generate the fault trees quickly. In the next section, a brief overview
of the methodology is presented. Then, in section 3, the computer program for
fault tree construction is introduced. Section 4 presents a case study we have
performed on a part of an Unmanned Aerial Vehicle (UAV). The last part of this
paper contains discussions and conclusions.

2 General description of the approach

We use a component-based approach for system modeling, meaning that every
entity in a system is modeled as a component, or a parameter of a component.
This includes actual devices, human operators, external events, etc. Then, the
system will be modeled as a set of components connected to each other. Various
types of flows can be transported from one component to another, inside the
system. The details of the modeling methodology are explained in [14].
 Then, in the second step, an algorithm is applied to this system model to
generate the fault trees. This trace-back algorithm starts from the component in
which the top event occurs, and examines all the components that might be
involved in causing the top event to occur, and tries to find all the possible fault
paths that can lead into the top event. The faults and failures of components are
combined to each other by logical AND and OR gates, to form the tree structure.

3 Computer program for fault tree generation

We have implemented the whole approach as a computer code, with the
following parts:

• Interface for making component models
• Graphical interface for system design

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-150 Risk Analysis VII

• Fault tree synthesis procedures
• Output window for viewing of the results

 In the following sections, any of these four parts will be explained.

3.1 Interface for making component models

In this approach, components are the building blocks of systems. Thus, in order
to be able to model a system, first we should prepare the required component
models. A typical component is modeled as a simple box with a caption, several
input and output ports, and a function table. As shown in figure 1, a component
can interact with the other components of the system via its input and output
ports.

RelayGenerator

Controller

Motor

Input 1 Rudder
Input 2

Figure 1: Component model for a relay as a part of a system.

 For each component, the input-output relationships are described in a function
table. Figure 1 shows the component model for a relay, and the function table for
this component is as shown in table 1.

Table 1: Function table for a relay.

Input 1 Input 2 Functionality
Condition Output

1 1 OK 1
0 - - 0
1 - Stuck Closed 1
- - Fail to Close 0
- 0 OK 0

 The functionality condition column shows whether the component is working
in its normal operating mode or it is in a failed state.
 Making a new component model in this program takes place in three steps:

3.1.1 Defining a new component
Basic information about the component should be entered at the first step. The
component-designing window allows the user to make the component models to
be later used in the system-modeling step. To do so, a name and a category
should be selected for any new component. Also, the number of input and output
ports should be specified. Any newly designed component is stored in a
component library for future use. Categorization of the components allows
having an easier access to the component in the system-modeling phase.

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

Risk Analysis VII PI-151

3.1.2 Adding detailed descriptions
After defining a new component, more detailed descriptions about the
component should be provided in another window. This includes flow types for
each of the ports, range of variation for these flows, and also failure modes of the
component. For any parameter of a component, a discrete values domain should
be specified.

3.1.3 Filling up the function table and / or state transition table
At this point, the function table for the component will be created automatically.
However it needs to be filled up by the user. Each cell of the table is occupied by
the values from the values domain specified in the previous step. In each table
cell, these values appear as a drop down list. The user fills up the function table
based on the information he has about the way the component functions. He
should specify the output value for any of the different combinations of inputs,
functionality condition, and any other parameter.
 As explained in [14], some components may also need a state transition table,
to describe how they move from one state to another. For these components, a
similar procedure as above should be followed for filling up the state transition
table.
 The component modeled in these 3 steps is now ready to use in a system
model. It will be stored in a component library for later being used in modeling
systems.

3.2 Graphical interface for system design

A graphical interface is provided for modeling the hardware configuration of the
system. In this window one can use the components in the library to design his
system. A list of the components existing in the library is provided in this
window. Any required component can be easily selected from its category in the
library, and added to the system model. If some components we need do not
exist in the library, we should go to the component-making window, create the
components, and then get back to the system design window.
 Actually, when all of the component models are already constructed, it will
not take more than a few minutes to model the system as a set of components
connected to each other.
 After completing the system-modeling phase, the last thing to do is defining
the top event. In our methodology, a top event is defined by assigning specific
values to some of the parameters of the system. The top event window of the
program assists this procedure by providing lists of all components, their
parameters, and the values domain for any of these parameters.

3.3 Fault tree synthesis procedures

The main part of the program is its fault tree synthesis procedures, which are
responsible to analyze the system model and generate the fault tree for the top
event.

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-152 Risk Analysis VII

 When the system is modeled completely and the top event is defined, we can
run the program so that the fault trees are automatically generated. This part is
actually the implementation of the trace-back algorithm. A flowchart for this
algorithm is presented in [14].
 The trace-back algorithm starts from the point of occurrence of the top event,
and examines the function tables and state transition tables of the components to
find all of the potential causes of that top event. The algorithm jumps from one
component to another, in reverse directions, i.e. reverse to the direction of the
flows.
 When the algorithm is examining a component, its function table or state
transition table is searched to find the rows with the output value of interest.
Three different cases are possible: If there is a functionality condition of the
component leading to that output value, a basic event is added to the tree and
current branch of the tree is terminated.
 However, if it is caused by the external inputs, trace-back is continued to the
component from which these inputs are coming. Finally, in case of a state
column affecting the output value for that row, the algorithm should jump to the
corresponding state transition table. This procedure is continued until system
boundaries are reached.
 A similar procedure exists for the cases the algorithm is examining a state
transition tables of the components.

3.4 Output window for viewing the results

After the fault trees are generated by the program, they can be viewed in an
output page. The output page shows the resultant fault trees in formats
compatible with the well-known fault tree standards. The fault trees can be
edited and saved in this window.

4 Case study

In order to show the applicability of the approach to actual cases, and to survey
the validity of the results of the developed computer program, a case study is
performed. The system we chose for the case study is shown in figure 2. This
system is a part of an UAV for flights in populated areas [15], which includes
electric power systems, electronic flight control systems, and rudder actuators.

4.1 System description

The electrical power supply system of this UAV is responsible for providing
electrical supply for the actuators and critical avionics. It consists of generators,
converters, and batteries. The generators serve as starters as well as generators to
charge the batteries.
 In normal operation, the generators supply the actuators, while the critical
avionics are supplied by the converters. The batteries are charged by the
generators through the convertors. The convertors are bidirectional, meaning that

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

Risk Analysis VII PI-153

G1 G2

C1 C2 C3

B2B1

Sa

Sb

Sc

M
1

1

2

2 La

Lb

M

R
u
d

d
er

D
ata

B
u

s

Figure 2: UAV system as a case study.

in the case of failure of generators, the batteries will supply the actuators and the
electric motor via the converters.
 The mechanical part of the system consists of actuators, motors, and the
rudder. The actuators used in this design are electromechanical actuators, which
are based on an electrical motor with a gear to linear or angular mechanical
output and drive electronics. The actuators include position sensors and
commutation sensors.
 The critical avionics of the UAV is the part of the electronic units which uses
the control commands from the sensors and flight conditions to compute the
actuator commands for the vehicle.

4.2 Component-based modeling of the system

Based on the system description in the previous section, we have developed the
component-based model for this system as shown in figure 3. Because of the
redundant elements, the number of connections has increased dramatically. A
system model like figure 3 is entered into the program, using the system design
interface. In our component-based model the top event will de expressed as
“Rudder Output = 0”. Figure 3 only represents the hardware configuration of the
system. For any of the components, the input-output relationships are described
in their function tables. Tables 2 to 8 show the function tables of the
components. The small components named as “J” and “E”, represent Junctions
and Extensions, respectively, which are virtual components used for modeling
purposes only [14].

Table 2: Function table for G1, G2, B1, and B2.

Functionality Condition Output
OK 1

Failed 0

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-154 Risk Analysis VII

Table 3: Function table for the rudder.

Inp1 Inp2 Functionality Condition Output
0 0 - 0
- - Failed 0
1 - OK 1
- 1 OK 1

Table 4: Function table for C1, C2.

Inp1 Inp2 Functionality Condition Outp1 Outp2
0 - - 0 -
- 0 - - 0
- - Failed 0 0

Table 5: Function table for C3, Sa, Sb, and Sc.

Inp Functionality Condition Outp
0 - 0
- Failed 0
1 OK 1

Table 6: Function table for La part 1, La part 2, Lb part 1, Lb part 2.

Inp1 Inp2 Inp3 Power Input Functionality Condition Outp
- - - 0 - 0
- - - - Failed 0
0 0 0 - - 0
1 - - 1 OK 1
- 1 - 1 OK 1
- - 1 1 OK 1

Table 7: Function table for La, Lb.

Inp Functionality Condition Outp
0 - 0
- Failed 0
1 OK 1

Table 8: Function table for data bus.

Inp1 Inp2 Inp3 Functionality
Condition

Outp1 Outp2 Outp3

0 - - - 0 - -
- 0 - - - 0 -
- - 0 - - - 0
- - - Failed 0 0 0
1 - - OK 1 - -
- 1 - OK - 1 -
- - 1 OK - - 1

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

Risk Analysis VII PI-155

Figure 3: Component-based model for the UAV system.

La_Outp=0 Lb_Outp=0

Fail

La

 Fail

Lb

 Fail

LaPart1_Outp= LaPart2_Outp=0 LbPart1_Outp LbPart1_Outp

a

Rudder_Inp1=Rudder_Inp2

La_Inp=0 Lb_Inp=0

b c d

Rudder_Outp=0

Rudder

Figure 4: Fault tree for the UAV system.

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-156 Risk Analysis VII

Figure 5: Fault tree for the event “LaPart1_Outp=0”.

4.3 Results

Nyström, et al performed fault tree analysis for this system [15]. The fault trees
are shown in their paper. So, in order to be able to have a comparison, we have
generated the fault trees for the same top event with same assumptions and

a
LaPart1_Outp=0

LaPart1_PowInp=0

C1_Outp1=0

LaPart1_Inp3=0

G1_Outp=0

LaPart1_Inp1=0

LaPart1
Failed

Bus_Inp1=0 Bus
Failed

Sa_Inp=0
Sa

Failed

Sa_Outp=0

B1_Outp=0 C1_Outp2=0

B1
Failed

C1_Inp2=0 C1
Failed

G1_Outp=0

G1
Failed

C1
Failed

C1_Inp1=0

B1_Outp=0

B1
Failed

LaPart1_Inp2=0

Bus_Inp2=0
Bus

Failed
Sb_Outp=0

Sb_Inp=0
Sb

Failed

B2_Outp=0 C2_Outp2=0

B2
Failed

C2
Failed

C2_Inp2=0

G2_Outp=0

Bus_Inp3=0

Bus
Failed

Sc_Outp=0

Sc_Inp=0 Sc
Failed

C3_Outp3=0

C3_Inp3=0

G2_Outp=0

C3
Failed

Bus_Outp1=0 Bus_Outp2=0 Bus_Outp3=0

G1
Engine

Stop

G1
Failed

G1
Engine

Stop

G2
Engine
Stop

G2
Engine

Stop

G2
Failed

G2
Failed

Power
Bus
Fail

PowerBus_Outp1=0

C2_Outp2=0

C2_Inp=0

B2_Outp=0

B2
Failed

C2
Failed

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

Risk Analysis VII PI-157

conditions. The top event is the failure of the whole system, i.e. loss of rudder
function. This is equivalent to the top event definition as “Rudder_Outp=0” in
our methodology.
 After top event definition and running the program, it takes less than 2
minutes for the program to generate the fault tree logic and draw the tree. Similar
to the manually constructed fault trees, the fault tree generated by the program is
very large, too. So, in order to make it useable we have broken it into 5 parts.
The upper part of the tree, starting from the top event, is shown in figure 4. To
make the results easily comparable to the original fault trees, we have located the
transfer points in similar places to those of the manually constructed fault tree.
 The 4 sub-trees of a, b, c, and d are quite similar in structure. Thus, we just
show one of them here, which is the fault tree corresponding to transfer-in point
a. This sub-tree is presented in figure 5.
 The fault trees constructed by manual and automated approach have similar
structures. In order to have a better comparison, we have created the Boolean
expression for the automatically generated fault tree. The failure rates of the
basic events of the tree are provided in the original work [15]. Having these data,
and using the created Boolean expression, we have calculated the top event
probability for the fault tree generated by the program. This value is compared to
the top event probability for the manual fault tree.

5 Discussions and conclusions

Comparing the fault trees shows a good match between the manually and
automatically constructed fault trees. Some minor differences can be seen in
some points, mainly in the location or order of appearance of some events. This
is mainly because the automated procedure is an exact step-by-step procedure
and the trace-back algorithm moves from one component to the immediate
antecedent of that component. However in manual fault tree construction,
different people have different overviews of the system, so different results
might be created.
 The fault trees constructed by manual and automated approach have similar
structures. In order to have a better comparison, we have created the Boolean
expression for the automatically generated fault tree. The failure rates of the
basic events of the tree are provided in the original work [15]. Having these data,
and using the created Boolean expression, we have calculated the top event
probability for the fault tree generated by the program. This value is compared to
the top event probability for the manual fault tree.
 As shown in table 9, the values for the top event probabilities are very close.
In fact, the small difference in the values is due to a difference in the logic of the
trees. It can be seen in [15] that in the manual fault tree, two intermediate events
of “Loss of power supply from G2” and “Loss of power supply from C2” are
combined by an OR gate (GATE 51), which we believe is a mistake. According
to the caption of this gate, “Loss of power supply from G2 and C2”, this
seemingly should be an AND gate, which is the case in the automated fault tree.

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-158 Risk Analysis VII

Table 9: Comparing the results from the manual and automated fault trees.

 Manual FT Automated FT
Basic Events 25 25
Intermediate Events 18 35
AND Gates 4 5
OR Gates 15 17
Top Event Probability 2.25E-4 2.70E-4

If this OR gate is replaced by an AND gate, the top event values for the two trees
will be exactly the same, approving that the results generated by our program
completely matches the manually constructed fault trees.
 The higher number of intermediate events in the computer generated fault
trees shows that this fault tree contains more details about the exact fault paths
that can lead into the top event. In manual fault tree construction, some details
and intermediate steps might be skipped.
 Thus the validity of the results for this case has been verified. Use of
computerized fault tree construction can assist the safety analysis process,
especially for large systems. This is especially useful in system design step,
where the most reliable design must be chosen out of many design options. Also,
sometimes, as the sample case shown in this case study, using the results from
the computerized fault tree construction may help us find some mistakes in the
manually constructed fault trees.
 Developing complete and customized component libraries for systems and
plants makes this automated process suitable for being used for large-scale
systems.

Reference

[1] Vesely, W.E., et al, Fault tree handbook. NUREG-049, Washington, DC:
US Nuclear Regulatory Commission, 1981.

[2] Hasal, D.F., Advanced concepts in fault tree analysis, Seattle, WA, Aero-
Space Division of the Boeing Company, 1965.

[3] Ericson, C.A., Fault tree analysis—a history. Proc. of the 17th Int. system
Safety Conference, Orlando, 1999.

[4] Wang, Y., et al, A new algorithm for computer-aided fault tree synthesis.
Journal of Loss Prevention in Process Industries, 15, pp. 265–277, 2002

[5] Chuei-Tin, C. & Her-Chuan, H., New developments of the digraph-based
techniques for fault tree synthesis. Industrial & Engineering Chemistry
Research, 31, pp.1490–1502, 1992

[6] Lapp, S.A. & Powers, G.J., Computer-aided synthesis of fault-trees. IEEE
Transactions on Reliability, R-26, pp. 2–13, 1977

[7] Andrews, J.D. & Henry, J.J., A computerized fault tree construction
methodology. Proceedings of Institute of Mechanical Engineers, 211 (E),
pp. 171–183, 1997

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

Risk Analysis VII PI-159

[8] Henry, J.J. & Andrews, J.D., Computerized fault tree construction for a
train braking system. Quality and Reliability Engineering International, 13
(5), pp. 299–309, 1997.

[9] Salem, S.L., Apostolakis, G.E., & Okrent, D., A new methodology for the
computer-aided construction of fault tree. Annals of Nuclear Energy, 4,
pp. 17–433. 1977;

[10] Liggesmeyer, P. & Rothfelder, M., Improving system reliability with
automatic fault tree generation. Proc. of the 28th Annual Int. Symposium
on Fault-tolerance Computing, pp. 90–99, 1998.

[11] Taylor, J.R., An algorithm for fault-tree construction. IEEE Transactions
on Reliability, R-31 (2), pp. 137–146, 1982.

[12] Kumamoto, H. & Henley, E.J., Automated fault tree synthesis by semantic
network modeling, rulebased development and recursive 3-value procedure.
Reliability Engineering and System Safety, 49, pp. 171–188. 1995

[13] Papadopoulos, Y. & Marhun, M., Model-based synthesis of fault trees from
Matlab–Simulink models. Proc. of the Int. Conf. on Dependable Systems
and Networks (DSN’01), Sweden, pp. 77–82, 2001.

[14] Majdara, A. & Wakabayashi, T., Component-based modeling of systems
for automated fault tree generation, Reliability Engineering and System
Safety, 94, pp. 1076-1086, 2009

[15] Nyström, B., et al, Fault tree analysis of an aircraft electronic power supply
system to electrical actuators, 9th Int. Conf. on Probabilistic Methods
Applied to Power Systems, KTH, Stockholm, June 11-15, 2006.

 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

PI-160 Risk Analysis VII

