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Abstract 

Fault Tree Analysis is a well-known method for reliability evaluation of systems. 
However, manual construction of fault trees is a tedious and time-consuming 
task. Thus, many researchers tried to get benefit of high speed and accuracy of 
digital computers to automate this process. Automated construction of fault trees 
can be very useful in system reliability analysis, especially in design step, where 
we need to choose the most reliable design out of several design options. 
     In this paper we will present the computer code we have developed for 
automated fault tree generation. The program is actually the implementation of 
an approach we have developed for algorithmic construction of fault trees. The 
main part of this approach is a component-based method for system modeling. In 
this method, a system is modeled as a set of components connected to each other. 
Every component is described in a function table. This modeling approach is 
capable of modeling a wide range of devices and concepts in different types of 
systems. The model prepared in this part is then used as an input to the “fault tree 
synthesis algorithm”, and the result is the fault tree for the specified top event. A 
case study is done for a part of a UAV system. The results generated by the 
program are compared with the manually constructed fault trees.  
Keywords: fault tree, computer-aided fault tree construction, component-based 
modeling, function table, state transition table, trace-back algorithm. 

1 Introduction 

A fault tree is a graphical representation of the various combinations of faults 
and failures that will result in an undesired event, which is called top event [1–
3]. Since manual construction of fault trees is tedious and time consuming and it 
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is vulnerable to human mistakes, there have been interests in computerizing this 
task [4–13]. Automating the fault tree construction process can make it faster and 
easier. Also, computer-aided fault tree generation, if implemented appropriately, 
will have fewer systematic errors than the manual approach. 
     Generally, any automated approach for fault tree construction can be 
considered as having two phases: First, system modeling; and second, fault tree 
synthesis. The challenging part is the first phase, in which the system under 
study should be modeled appropriately without ignoring any necessary details. 
Also, the system model must be suitable for being used by an automated 
procedure, in the second step.  
     Various modeling approaches are utilized by different researchers. Some of 
the most commonly used approaches are digraphs [4–6], decision tables [7–9], 
and state diagrams [10, 11]. Kumamoto and Henley proposed a semantic 
network modeling approach [12]. Papadopoulos et al. used Matlab–Simulink 
models for model-based synthesis of fault trees [13].  
     We have developed an improved methodology for computer-aided fault tree 
construction, which consists of a component-based approach for system 
modeling and a trace-back algorithm for fault tree synthesis. The approach is 
then implemented as a computer program which can receive the system model as 
an input and generate the fault trees quickly. In the next section, a brief overview 
of the methodology is presented. Then, in section 3, the computer program for 
fault tree construction is introduced. Section 4 presents a case study we have 
performed on a part of an Unmanned Aerial Vehicle (UAV). The last part of this 
paper contains discussions and conclusions.  

2 General description of the approach 

We use a component-based approach for system modeling, meaning that every 
entity in a system is modeled as a component, or a parameter of a component. 
This includes actual devices, human operators, external events, etc. Then, the 
system will be modeled as a set of components connected to each other. Various 
types of flows can be transported from one component to another, inside the 
system. The details of the modeling methodology are explained in [14]. 
     Then, in the second step, an algorithm is applied to this system model to 
generate the fault trees. This trace-back algorithm starts from the component in 
which the top event occurs, and examines all the components that might be 
involved in causing the top event to occur, and tries to find all the possible fault 
paths that can lead into the top event. The faults and failures of components are 
combined to each other by logical AND and OR gates, to form the tree structure.  

3 Computer program for fault tree generation 

We have implemented the whole approach as a computer code, with the 
following parts: 

• Interface for making component models 
• Graphical interface for system design 
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• Fault tree synthesis procedures 
• Output window for viewing of the results 

     In the following sections, any of these four parts will be explained. 

3.1 Interface for making component models 

In this approach, components are the building blocks of systems. Thus, in order 
to be able to model a system, first we should prepare the required component 
models. A typical component is modeled as a simple box with a caption, several 
input and output ports, and a function table. As shown in figure 1, a component 
can interact with the other components of the system via its input and output 
ports.  

RelayGenerator

Controller

Motor

Input 1 Rudder
Input 2

 

Figure 1: Component model for a relay as a part of a system.  

     For each component, the input-output relationships are described in a function 
table. Figure 1 shows the component model for a relay, and the function table for 
this component is as shown in table 1. 

Table 1:  Function table for a relay. 

Input 1 Input 2 Functionality 
Condition Output 

1 1 OK 1 
0 - - 0 
1 - Stuck Closed 1 
- - Fail to Close 0 
- 0 OK 0 

 
     The functionality condition column shows whether the component is working 
in its normal operating mode or it is in a failed state. 
     Making a new component model in this program takes place in three steps: 

3.1.1 Defining a new component 
Basic information about the component should be entered at the first step. The 
component-designing window allows the user to make the component models to 
be later used in the system-modeling step. To do so, a name and a category 
should be selected for any new component. Also, the number of input and output 
ports should be specified. Any newly designed component is stored in a 
component library for future use. Categorization of the components allows 
having an easier access to the component in the system-modeling phase.  
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3.1.2 Adding detailed descriptions 
After defining a new component, more detailed descriptions about the 
component should be provided in another window. This includes flow types for 
each of the ports, range of variation for these flows, and also failure modes of the 
component. For any parameter of a component, a discrete values domain should 
be specified.  

3.1.3 Filling up the function table and / or state transition table 
At this point, the function table for the component will be created automatically. 
However it needs to be filled up by the user. Each cell of the table is occupied by 
the values from the values domain specified in the previous step. In each table 
cell, these values appear as a drop down list. The user fills up the function table 
based on the information he has about the way the component functions. He 
should specify the output value for any of the different combinations of inputs, 
functionality condition, and any other parameter.  
     As explained in [14], some components may also need a state transition table, 
to describe how they move from one state to another. For these components, a 
similar procedure as above should be followed for filling up the state transition 
table.  
     The component modeled in these 3 steps is now ready to use in a system 
model. It will be stored in a component library for later being used in modeling 
systems. 

3.2 Graphical interface for system design 

A graphical interface is provided for modeling the hardware configuration of the 
system. In this window one can use the components in the library to design his 
system. A list of the components existing in the library is provided in this 
window. Any required component can be easily selected from its category in the 
library, and added to the system model. If some components we need do not 
exist in the library, we should go to the component-making window, create the 
components, and then get back to the system design window. 
     Actually, when all of the component models are already constructed, it will 
not take more than a few minutes to model the system as a set of components 
connected to each other.  
     After completing the system-modeling phase, the last thing to do is defining 
the top event. In our methodology, a top event is defined by assigning specific 
values to some of the parameters of the system. The top event window of the 
program assists this procedure by providing lists of all components, their 
parameters, and the values domain for any of these parameters. 

3.3 Fault tree synthesis procedures 

The main part of the program is its fault tree synthesis procedures, which are 
responsible to analyze the system model and generate the fault tree for the top 
event.  
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     When the system is modeled completely and the top event is defined, we can 
run the program so that the fault trees are automatically generated. This part is 
actually the implementation of the trace-back algorithm. A flowchart for this 
algorithm is presented in [14].  
     The trace-back algorithm starts from the point of occurrence of the top event, 
and examines the function tables and state transition tables of the components to 
find all of the potential causes of that top event. The algorithm jumps from one 
component to another, in reverse directions, i.e. reverse to the direction of the 
flows. 
     When the algorithm is examining a component, its function table or state 
transition table is searched to find the rows with the output value of interest. 
Three different cases are possible: If there is a functionality condition of the 
component leading to that output value, a basic event is added to the tree and 
current branch of the tree is terminated.  
     However, if it is caused by the external inputs, trace-back is continued to the 
component from which these inputs are coming. Finally, in case of a state 
column affecting the output value for that row, the algorithm should jump to the 
corresponding state transition table. This procedure is continued until system 
boundaries are reached. 
     A similar procedure exists for the cases the algorithm is examining a state 
transition tables of the components.  

3.4 Output window for viewing the results 

After the fault trees are generated by the program, they can be viewed in an 
output page. The output page shows the resultant fault trees in formats 
compatible with the well-known fault tree standards. The fault trees can be 
edited and saved in this window. 

4 Case study 

In order to show the applicability of the approach to actual cases, and to survey 
the validity of the results of the developed computer program, a case study is 
performed. The system we chose for the case study is shown in figure 2. This 
system is a part of an UAV for flights in populated areas [15], which includes 
electric power systems, electronic flight control systems, and rudder actuators. 

4.1 System description 

The electrical power supply system of this UAV is responsible for providing 
electrical supply for the actuators and critical avionics. It consists of generators, 
converters, and batteries. The generators serve as starters as well as generators to 
charge the batteries.  
     In normal operation, the generators supply the actuators, while the critical 
avionics are supplied by the converters. The batteries are charged by the 
generators through the convertors. The convertors are bidirectional, meaning that  
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Figure 2: UAV system as a case study.  

in the case of failure of generators, the batteries will supply the actuators and the 
electric motor via the converters.  
     The mechanical part of the system consists of actuators, motors, and the 
rudder. The actuators used in this design are electromechanical actuators, which 
are based on an electrical motor with a gear to linear or angular mechanical 
output and drive electronics. The actuators include position sensors and 
commutation sensors.  
     The critical avionics of the UAV is the part of the electronic units which uses 
the control commands from the sensors and flight conditions to compute the 
actuator commands for the vehicle. 

4.2 Component-based modeling of the system 

Based on the system description in the previous section, we have developed the 
component-based model for this system as shown in figure 3. Because of the 
redundant elements, the number of connections has increased dramatically. A 
system model like figure 3 is entered into the program, using the system design 
interface. In our component-based model the top event will de expressed as 
“Rudder Output = 0”. Figure 3 only represents the hardware configuration of the 
system. For any of the components, the input-output relationships are described 
in their function tables. Tables 2 to 8 show the function tables of the 
components. The small components named as “J” and “E”, represent Junctions 
and Extensions, respectively, which are virtual components used for modeling 
purposes only [14]. 

Table 2:  Function table for G1, G2, B1, and B2. 

Functionality Condition Output 
OK 1 

Failed 0 
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Table 3:  Function table for the rudder. 

Inp1 Inp2 Functionality Condition Output 
0 0 - 0 
- - Failed 0 
1 - OK 1 
- 1 OK 1 

 

Table 4:  Function table for C1, C2. 

Inp1 Inp2 Functionality Condition Outp1 Outp2 
0 - - 0 - 
- 0 - - 0 
- - Failed 0 0 

 
 

Table 5:  Function table for C3, Sa, Sb, and Sc. 

Inp Functionality Condition Outp 
0 - 0 
- Failed 0 
1 OK 1 

 

Table 6:  Function table for La part 1, La part 2, Lb part 1, Lb part 2. 

Inp1 Inp2 Inp3 Power Input Functionality Condition Outp 
- - - 0 - 0 
- - - - Failed 0 
0 0 0 - - 0 
1 - - 1 OK 1 
- 1 - 1 OK 1 
- - 1 1 OK 1 

 

Table 7:  Function table for La, Lb. 

Inp Functionality Condition Outp 
0 - 0 
- Failed 0 
1 OK 1 

 

Table 8:  Function table for data bus. 

Inp1 Inp2 Inp3 Functionality 
Condition 

Outp1 Outp2 Outp3 

0 - - - 0 - - 
- 0 - - - 0 - 
- - 0 - - - 0 
- - - Failed 0 0 0 
1 - - OK 1 - - 
- 1 - OK - 1 - 
- - 1 OK - - 1 
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Figure 3: Component-based model for the UAV system. 
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Figure 4: Fault tree for the UAV system. 
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Figure 5: Fault tree for the event “LaPart1_Outp=0”. 
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conditions. The top event is the failure of the whole system, i.e. loss of rudder 
function. This is equivalent to the top event definition as “Rudder_Outp=0” in 
our methodology.  
     After top event definition and running the program, it takes less than 2 
minutes for the program to generate the fault tree logic and draw the tree. Similar 
to the manually constructed fault trees, the fault tree generated by the program is 
very large, too. So, in order to make it useable we have broken it into 5 parts. 
The upper part of the tree, starting from the top event, is shown in figure 4. To 
make the results easily comparable to the original fault trees, we have located the 
transfer points in similar places to those of the manually constructed fault tree.  
     The 4 sub-trees of a, b, c, and d are quite similar in structure. Thus, we just 
show one of them here, which is the fault tree corresponding to transfer-in point 
a. This sub-tree is presented in figure 5.  
     The fault trees constructed by manual and automated approach have similar 
structures. In order to have a better comparison, we have created the Boolean 
expression for the automatically generated fault tree. The failure rates of the 
basic events of the tree are provided in the original work [15]. Having these data, 
and using the created Boolean expression, we have calculated the top event 
probability for the fault tree generated by the program. This value is compared to 
the top event probability for the manual fault tree. 

5 Discussions and conclusions 

Comparing the fault trees shows a good match between the manually and 
automatically constructed fault trees. Some minor differences can be seen in 
some points, mainly in the location or order of appearance of some events. This 
is mainly because the automated procedure is an exact step-by-step procedure 
and the trace-back algorithm moves from one component to the immediate 
antecedent of that component. However in manual fault tree construction, 
different people have different overviews of the system, so different results 
might be created. 
     The fault trees constructed by manual and automated approach have similar 
structures. In order to have a better comparison, we have created the Boolean 
expression for the automatically generated fault tree. The failure rates of the 
basic events of the tree are provided in the original work [15]. Having these data, 
and using the created Boolean expression, we have calculated the top event 
probability for the fault tree generated by the program. This value is compared to 
the top event probability for the manual fault tree. 
     As shown in table 9, the values for the top event probabilities are very close. 
In fact, the small difference in the values is due to a difference in the logic of the 
trees. It can be seen in [15] that in the manual fault tree, two intermediate events 
of “Loss of power supply from G2” and “Loss of power supply from C2” are 
combined by an OR gate (GATE 51), which we believe is a mistake. According 
to the caption of this gate, “Loss of power supply from G2 and C2”, this 
seemingly should be an AND gate, which is the case in the automated fault tree.  
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Table 9:  Comparing the results from the manual and automated fault trees. 

  Manual FT Automated FT 
Basic Events 25 25 
Intermediate Events 18 35 
AND Gates 4 5 
OR Gates 15 17 
Top Event Probability 2.25E-4 2.70E-4 

 
If this OR gate is replaced by an AND gate, the top event values for the two trees 
will be exactly the same, approving that the results generated by our program 
completely matches the manually constructed fault trees.  
     The higher number of intermediate events in the computer generated fault 
trees shows that this fault tree contains more details about the exact fault paths 
that can lead into the top event. In manual fault tree construction, some details 
and intermediate steps might be skipped.  
     Thus the validity of the results for this case has been verified. Use of 
computerized fault tree construction can assist the safety analysis process, 
especially for large systems. This is especially useful in system design step, 
where the most reliable design must be chosen out of many design options. Also, 
sometimes, as the sample case shown in this case study, using the results from 
the computerized fault tree construction may help us find some mistakes in the 
manually constructed fault trees.  
     Developing complete and customized component libraries for systems and 
plants makes this automated process suitable for being used for large-scale 
systems. 
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