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Abstract 

In this paper a developed mathematical model of hazard distribution within a 
network system with a resistance feature is presented. The network system is 
described by graph theory. Hazards arising can be transmitted to others nodes 
which have connections with the infected node. Intensity of hazard transmission 
is described by channel bandwidth between the nodes of the network system. 
Each node has the ability to resist incoming hazards (to reduce it to safe level) in 
a network system. This ability is called resistance of the node. Resistance (or 
immunity) is regarded as random variables (or a random process) and Beta 
distribution is an appropriate probabilistic model of the node resistance.  
     The main purpose of this research work is developing a mathematical model 
that allows us to make forecast of how many cycles are necessary on average to 
eliminate hazards or to reduce to a safe level; how long (how many average 
cycles) system can work normally (corresponding to safety requirements) under 
the influence of hazard. Developed mathematical model of hazard distribution in 
a network system with resistance feature could be used in the assessment of 
operation safety of emergency systems that are provided to operate in extreme 
conditions during an accident as well.  
Keywords: hazard distribution, resistance, Bayesian approach. 
 

1 Introduction 

Not always is it possible to perform reliability analysis for devices separately. 
Because, usually, devices don’t operate separately, so its influence on each other 
must be considered. Combinations of devices, humans etc., structure network 
system (i.e. nodes and network lines or channels that represent interaction 
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between components). Hazard in the risk analysis is defined as a feature or 
characteristic of material, technological process, information, human activities or 
other phenomena that specifies a potential possibility of danger for humans, 
nature, buildings, equipment and others. Illustrations of a hazard could be 
poisonous chemical substances kept in stock, or open sources of radiation, etc. 
The hazard is transmitted from one node to others trough the network channels. 
On the other hand, each node has the ability to resist the incoming hazard (to 
block its transmission or to diminish it). This property of node (i.e. software/ 
device/human) is called resistance. Node resistance can be created by the 
security systems. For instance, electricity distribution within networks with 
sophisticated automatic-protection against short circuits, network congestion, 
lines cracks and others. The purpose of this equipment is to localize failure 
(hazard) and to prevent it from spreading deeper into the network. It is of high 
importance for the future of electric distribution and transmission networks. It is 
similar to the smart grid. The systems for the assessment of reliability of 
hazardous materials transportation are going to be implemented in many 
countries. The detailed accounting of hazardous cargo routes and management 
are installed in these systems. Such system helps to divert hazardous cargos into 
more reliable routes in cases of traffic jams or other vehicle accidents, i.e., this 
system operates as a protection or resistance. These and similar systems require a 
mathematical model of hazard distribution within the network systems. The 
developed model helps to forecast the dependability level of the operating 
network system: to forecast how many cycles (it could be deterministic value for 
example: hours, days, etc.) are necessary to eliminate hazard or to reduce to safe 
level; how long (how many cycles) the system can work normally under the 
influence of a hazard. 

2 Model of distribution within network system 

First of all let us define several concepts that will be used in this paper: 
     A number of network nodes. The number of network nodes is marked as N. 
     Additive hazard. It is a sort of hazard, when hazards in the nodes of the 
network can be added to or a part of hazard moved to the other nodes (marked as 
H). 
     Flow intensity qij: qij ≥ 0 – coefficient of flow intensity in the network lines or 
channel; it marks the part of the hazard in the node i that will be transmitted to 
the node j [1]. The intensity of the flow to the node j and the intensity of the flow 
from the node j are defined respectively 
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     Hazard transfer cycle. Hazard transfer within the network from one node to 
the other is regarded as one hazard transfer cycle. 
     Network node resistance. Coefficient marked as I(j)(·). It marks which part of 
the hazard is stopped, before getting in the node j (0 ≤ I(j) ≤ 1, i.e. percentage). 
“Observed” value of node j resistance could be obtained 
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k = 1, 2, …, here k – number of cycles, 
)(kjq

  – the flow of hazard to the node j in 

the kth cycle, Pj(k) – amount of hazard that gets into the node j during the kth cycle.  
     Mathematical model of hazard distribution within network system with 
deterministic resistances of nodes was proposed in Augutis & Ušpuras (2006) 
research work [2]. Hazard in nodes after k+1 cycles  
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Q
~  – network flow matrix, with respect of resistances I(j) , j = 1,…, N, of nodes, 

is defined as 
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qij:{0 ≤ qij ≤ 1, qi1 + ... + qiN = 1} marks the part of the hazard in the node i that 
will be transmitted to the node j. 
     Hazard distribution within network system with resistance of nodes (

)( jI –

nodes’ resistance value into the node j; ijq  part of the hazard in the node i that 

will be transmitted to the node j) is presented in Figure 1. 
 

 

Figure 1: Fragment of network system. 

     Performing reliability analysis of real system true values of system nodes 
resistances are unknown. In this case resistance of node is assumed as random 
variable. In this paper developed model (presented in [1]) of hazard distribution 
is extended by two cases of unknown random resistance: 

 
 www.witpress.com, ISSN 1743-3517 (on-line) 
WIT Transactions on Information and Communication Technologies, Vol 43, ©2010 WIT Press

Risk Analysis VII  PI-15



 Invariable resistance (but unknown value of it) that is assumed as random 
variable. In this case it is important to obtain estimate of node resistance that is 
necessary for the forecast of the hazard level in node (in all network system as 
well). For instance, forecast how many cycles are necessary to reduce hazard 
to safe level or to eliminate, how long (how many cycles) system can work 
normally under the influence of hazard – to make decision in what moment 
supporting system should be switched on (i.e. alert generation). 
 Inconstant resistance (increasing or decreasing) with known trend of it. For 
instance, self-learning system has increasing resistance. In this case concerned 
forecast – how many cycles are necessary to eliminate hazard or to reduce to 
safe (or acceptable) level. In the period of ageing system has decreasing 
resistance. In each cycle it is essential to have forecast how long (how many 
cycles) system can work normally under the influence of hazard. For instance, 
running device is degrading because of the influence of hazard, but it still has 
ability to diminish hazard. If the maintenance of device isn’t costly it is 
expedient to use the device as long as it satisfies safety requirements before 
switching on of expensive supporting security system. 

3 Mathematical model of node resistance 

At first we need to choose model selection for node resistance. Resistance 
probabilistic distribution must have the following properties: 
 Case 1 (invariable resistance). Value of resistance belongs to interval [0, 1]. 
 Case 2 (inconstant resistance). Value of resistance belongs to interval [0, 1].  

     The mean of resistance satisfy equality 

),...,,()(E
)(1)()( jsjj kfkI  , (5) 

f(j)(k, ·) – known function (i.e. linear, exponential and so on trend function) that 
depends on k – cycle number and parameters θi, i = 1, …, s(j), j = 1, …, N, N – 
number of nodes. Note in this paper analyzed case when resistance trend 
function depends on cycle number only. But in common it can be dependent on 
more than one factor, i.e. in this work all proposed models will be suitable as 
well. Variance of resistance is small, when the mean of resistance is near 0 or 1 
(see Figure 2). In both cases (of invariable and inconstant resistance) Beta 
distribution is acceptable model for resistance. 
     Suppose it is possible to do measurements or observations of node resistance. 
For instance, hazard – high temperature, resistance measurement – how many 
degreases temperature was lowered by the node. In this case estimates of 
parameters in resistance model could be obtained (and updated) by algorithm 
that is based on BA (or modified application of BA [3]). Note “observed” values 
of node j resistance are I(j)k: 0  I(j)k  1, k = 1, 2, ..., (k – number of cycle), 
j = 1, 2, ..., N (N – number of nodes). 
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▬ – exponentially increasing mean of resistance. 

Figure 2: Transformation of density function.  

Case 1 (invariable resistance). Resistance I(j) of node j is approximated by Beta 
distribution Be((j), (j)). BA is applied to obtain estimates of parameters (j) and 
(j). Posterior density function of its is 
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φ(x, y) – prior density function of parameters (j) and (j). BA point estimates of 
parameters (j) and (j) are 
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Resistance point estimate is obtained as mean of updated Beta distribution 
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with variance  
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Case 2 (inconstant resistance). Resistance I(j)(k) of node j is approximated by 
Beta distribution Be((j)(k), (j)(k)), k – number of cycle, and trend function 
(mean) of resistance is known 

),...,,()(E
)(1)()( jsjj kfkI  , (11) 

it depends on number of cycle k and parameters θl (that are assumed as random 
variables with prior probability density functions pl(xl)), l = 1, …, s(j), and 
variance  

),...,,()(Var
)(1)()( jhjj kgkI  . (12) 
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     In this case variable is inconstant, expressed as known function that depends 
on cycle number k and parameters κi (that are assumed as random variables with 
prior probability density functions fi(zi)), i = 1,..., h(j)). In general, variance could 
be unknown and assumed as random variable (its point estimate is obtained by 
BA as well) or the variance could be known constant. Note, if there is no prior 
information about variance of resistance, it could be used such concatenation 
between parameters (j)(k) and (j)(k) of Beta distribution. 
     Note, if resistance is distributed by Beta distribution and mean of this 
distribution is varied exponentially, this variance of resistance is dependent on 
mean of the Beta distribution. When 0E )( jI  or 1E )( jI  then 0Var )( jI . In 

this paper, we analyzed the case when dependence between parameters of Beta 
distribution implements these assumptions, i.e., parameters satisfy following 
equality 
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     This case of Beta distribution with concatenation (eqn. (13)) between 
parameters was analyzed in more details, because it requires less prior 
information than others (information about the variance of resistance is not 
necessary). In this case (of resistance as a random process) BA modified 
application is used to update point estimates of the random parameters of 
considered model. Parameter estimates l, l = 1, …, s(j) are obtained as expected 
value of posterior probability density function 
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(·| I(j)1, ..., I(j)n) – posterior probability density function; 

l
R

 – range (set of all possible values) of parameter θl, l = 1, …, s. 

     Estimates of the parameters of resistance distribution (Beta distribution) 
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that satisfy eqn. (11) and (12), 
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     When concatenation between parameters (j)(k) and (j)(k) is defined by eqn. 
(13) estimate of parameter (j)(k) is  

)ˆ,...,ˆ,(ˆ
)(1)( jsj k  , (16) 

j = 1, ..., N (N – number of nodes), k – number of cycle. 
     The value of resistance of most systems can be equal to zero in general. If the 
resistance of system has possibility (or option) of self-learning, resistance 
reaches a value close to one. This value can be achieved in shorter or longer 
time, it depends on the specific conditions of the operation of the system. It 
could be possible to analyze changes of resistance dependence on the number of 
cycles or time. This dependence is determined according to prior information 
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about similar systems, technical characteristic of systems protection (resistance). 
The exponential trend function of this dependence was analyzed in this work.  
     The case of exponentially increasing resistance was analyzed in more details. 
Assume that trend of node resistance is exponential  

kakI  e1)(E , a > 0, k = 1, 2, …, (17) 

that depends on cycle number k and random parameter a (its prior probability 
density function p(x)). In this case is easy to prove that variance of resistance is 
bounded 

kakakI  e)e1()(Var  (18) 

because ))(E1)((E)(Var kIkIkI   (if resistance I(k) follows Beta distribution), 

and the variance is bounded: 25.0)(Varmax
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variance is less than 0.25 (it is not difficult to prove). 
     Or in case when parameters of Beta distribution satisfy equality (13), 
posterior probability density function of parameter a is  
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4 Integration of resistance model into the hazard distribution 
model 

The model of hazard distribution within network system (defined by eqn (3)) is 
extended by incorporation of resistance probabilistic model into it. Actually, it is 
a challenging task. A fragment (three nodes connected in series, flow intensity 
coefficients of network lines are marked as qij), presented in Figure 3, of network 
system is analyzed in order to show the complexity of this problem.  
 

 
 
 
 

Figure 3: A fragment of network system (nodes’ connection in series). 

   – node;  – immunity of node;  
 – transmission of one side direction. 
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     In this case hazard distribution process is as follow  
 the analyzed network system has point source of hazard (the amount of 
arisen hazard is H); 
 during the first cycle, hazard is transmitted to the first node: in the 1st node 
the amount of hazard H(1)1 = H(1– I(1)); 
 during the second cycle, after the transmission hazard in the 2nd node the 
amount of hazard H(2)2 = H(1)1q12 (1– I(2)) = Hq12(1– I(1))(1– I(2)), in the 3rd node 
the amount of hazard H(3)2 = H(1)1q13(1– I(3)) = Hq13(1– I(1))(1– I(3)); 
 during the third cycle hazard form the 1st and the 3rd nodes is transmitted 
into the 2nd node: the amount of hazard in the 2nd node is H(2)3 = H(1)2q12(1– I(2)) 
+ H(3)2q23(1– I(2)) = Hq12(1– I(1))(1– I(2)) + Hq13q23(1– I(1))(1– I(3))(1– I(2)); 
 ... 

     Node resistance is assumed as random variable, hazard transmitted through 
any node became random variable as well. The resistance as a random variable 
follows Beta distribution, i.e., I(j) ~ Be((j), (j)), opposite variable follows Beta 
distribution as well, i.e., Z(j) = 1– I(j) ~ Be((j), (j)). In this way  
 after the 1st cycle: hazard in the 1st node is defined as product of constant 
(initial hazard) and random variable which follows Beta distribution; 
 after the 2nd cycle: hazard in the  2nd and in 3rd nodes is defined as product 
of constant (i.e., product of initial hazard and flow intensity coefficient) and 
two random variables which follow Beta distribution;  
 after the 3rd cycle: hazard in the  2nd  node is defined as sum of two products 
of constant (i.e., product of initial hazard and flow intensity coefficients) and 
two (or three) random variables which follow Beta distribution; 
 … 

     This example shows that the incoming hazard is a random variable defined as 
a sum of products of random variables which follow Beta distribution. Our 
purpose is to obtain probability distribution of the hazard in nodes. This task was 
divided in two subtasks: the selection of probabilistic distribution of the product 
of Beta distributed random variables; the selection of probabilistic distribution of 
the sum of distributions which are used as approximations of the products of 
Beta distributed random variables.  
     Beta approximation. In probability theory it is known that the product of 
independent random variables distributed by Lognormal low as random variable 
follows Lognormal distribution as well, i.e. X ~ LogN(μ1, σ1

2), Y ~ LogN(μ2, σ2
2), 

product X·Y ~ LogN(μ1 + μ2, σ1
2 + σ2

2) [4]. Lognormal distribution was chosen 
for the approximation of Beta distribution because of it noticed useful property, 
i.e., this approximation provides simple (convenient for application) 
mathematical model of hazard distribution. Assume, that X ~ Be(α, β). Beta 
distribution is approximated by Lognormal distribution LogN(μ, σ2). Parameters 
μ and σ2 are computed by exactly matching the first and second central moments 
of random variable, i.e.  
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     The error of this approximation is of the order of the third moment.  
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     Lognormal sum approximation. The second subtask – analysis of the 
distribution of the sum of random variables which follow Lognormal 
distribution. The sum of Lognormal distributions (SLN) is well-known problem 
that no closed-form expression exists and it is difficult to evaluate numerically. 
Approximation of the SLN distribution by another Lognormal distribution, 
whose parameters are determined by moment (or cumulant) matching 
techniques, is widely used. The Fenton-Wilkinson [5] method is preferred in this 
research. Fenton-Wilkinson method gives approximation based on the first and 
second moments matching, i.e. X1 ~ ),( 2

11 LogN , X2 ~ ),( 2
22 LogN , sum of these 

random variables X = X1 + X2 is approximated by one lognormal distribution 
with parameters μ, σ2 that satisfy equations 
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     This kind of approximation enables one to develop a simple convenient 
mathematical model for hazard distribution. The error of this approximation is of 
the order of the third moment as well.  
To conclude, the steps for the modeling of hazard distribution within the network 
system with resistance feature are: 

1. during the kth cycle BA is used to obtain estimates of Beta distribution 
parameters 

kja )(ˆ  and 
kj )(̂ , i.e., to obtain the updated distribution 

Be(
kj )(̂ ,

kja )(ˆ ) of resistance of each node j;  

2. it is defined distribution of opposite variable to resistance in each node j, 
i.e. (1 – I(j)) ~ Be(

kj )(̂ ,
kja )(ˆ ); 

3. in each node j Beta distribution (of resistance) is approximated by 

Lognormal, i.e. Be(
kj )(̂ ,

kja )(ˆ )  ),( 2
)()( kjkjLogN  , parameters kj )(  and 

2
)( kj are obtained as the result of (23) system of equations; 

4. a) during the kth cycle hazard comes from nodes r and l to the node d, 
distribution of sum of random variables (1 – I(r)) and (1 – I(l)) approximated by 
one Lognormal distribution ),,,,(( 2

)()(
2

)()()( krkrklklkd fLogN    
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)( krkrklklkd g    which parameters are obtained as the result 

of (21) system of equations; 
4. b) distribution of product of random variables (1 – I(r)) + (1 – I(l)) and (1– 
I(j)) is Lognormal ),( 2

)(
2

)()()( kjkdkjkdLogN   . 

     Proposed probability distributions of nodes resistance are incorporated into 
the model of hazard distribution within the network system that is defined by 
eqn.(3). 
     In order to avoid approximation of Beta and Lognormal distributions mean 
value of hazard in each node could be used as it estimates. Mean of the sum (and 
the product) of independent random variables is easy computed as sum (or 
product) of means of analyzed random variables. 
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5 Results and conclusions 

The developed mathematical model of the hazard distribution within a network 
system with a resistance (assumed as a random variable or random process) 
feature is presented in this paper.  
 Beta distribution is selected as more suitable for the modeling of node 
resistance as random variable (or random process with prior known trend 
function). 
 The algorithm (based on Bayesian approach) for the estimation of 
parameters of resistance mathematical model is developed. 
 Approximation of resistance Beta distribution by Lognormal distribution 
using Fenton-Wilkinson method was presented. 

     The developed mathematical model of hazard distribution within the network 
system with immunity feature could be used in development of emergency 
systems (for instance, accident localization system of nuclear power plant) to 
forecasts how long normal (corresponding to safety requirements) operation of 
the system is possible under extreme conditions during the accident. 
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