
Design of automatic testing tool for railway
signalling systems software safety assessment

J.-G. Hwang1, H.-J. Jo1 & H.-S. Kim2

1Train Control Research Team,
Korea Railroad Research Institute (KRRI), Korea
2Electrical and Computer Engineering, Chungnam University, Korea

Abstract

Recent advances in embedded system technology have brought more dependence
on automating train control. While great efforts have been reported to improve
electronic hardware safety, there have been fewer systematic approaches to
evaluate software safety, especially for the vital software running on board
signalling systems. In this paper, we propose a new software tool to evaluate
train control system software safety. We have reviewed requirements in the
international standards and surveyed available tools in the market. From that, we
identified necessary tests to meet the standards and proposed a tool that can be
used during the whole software life cycle. We show the functional architecture
and internal components of the tool. This tool is unique in that it is a
comprehensive tool evaluating reliability and safety together.
Keywords: railway signalling systems, S/W testing tool, safety evaluation.

1 Introduction

The train control system has recently been converted from the existing
mechanical device to a computer system, and dependence on the software has
been rapidly increased. As for the representative system, the Japanese EJTC [2]
ATC (Automatic Train Control) system can be cited. The ATC of EJTC is
composed of anything from the vehicle control through a wayside signal
exchange at Level 0 to the unattended fully automated vehicle control system at
Level 3. In this way, with the transition from the mechanical, manual vehicle
signalling system at the earlier stage to the recent unattended fully automated
train control system, multiple computers began to be used as on-board

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

Risk Analysis VI 513

doi:10.2495/RISK080501

equipment, and the validation on the reliability and safety of the software to be
mounted on these computers began to gain force as an important issue. The
safety of software is being accomplished primarily by carrying out safety
activities at the software design stage, which is the earlier stage of development
for software. As for the representative safety activities, HAZOP, FTA and
FMECA [4,5], etc. can be cited. Though techniques like these are being utilized
at the earlier stage of development for software, no automated or formalized
method has been applied for additional validation on safety after completion of
development. In case of authenticating the safety of software, when evaluating
the safety activities of an authenticated institution, it is difficult to grasp the
faithfulness of software safety activities if they are evaluated by relying on the
documents provided by the authenticated institution, and it may be the case that
it is necessary to conduct additional validation. In this case, it will be very
helpful if there is a tool to evaluate the safety of software automatically because
it can enhance the reliability of the evaluation. The role of software for the
on-board mounted computer is becoming more important in accordance with the
trend toward automation and self-regulation of train operation, and therefore, the
effect of software on the whole train control system is being increased. The
on-board mounted computer has been becoming gradually high-powered in
accordance with the rapid development of the microprocessor market, and in the
case of its programming languages being used, the Ada, which is the superior
level language has also been used recently in addition to the simple assembly
language [2].
 This study suggests the software capable of evaluating the safety of software
for train control systems automatically. For this purpose, we analyzed relative
international standards and investigated existing testing tools for the software
used. From this, we suggested the tool capable of testing the main requirements
to meet the international standards, which can be used throughout the whole
development cycle for software. Unlike other existing tools, this tool is very
significant in the respect that it can verify the safety and reliability of software
simultaneously. This paper describes the results of the design stage of the tool,
and its composition is as follows.
 In section 2, the evaluation method on the safety of the train control software
suggested in this paper is explained, and the requirements of the testing tool once
automated are described in section 3. In section 4, the main testing items that
must be implemented for the suggested tool will be explained, and in section 5,
the architecture and main functions of the testing tool will be suggested, and the
conclusion will be given in section 6.

2 Evaluation of the safety of train control software

In this study, we suggested the safety test method of software by analyzing
IEC61508 [3], which is the international standard for the train control field. In
IEC61508, the Software Safety Integrity Level (SWSIL) is defined, and the
formalized development process is suggested, and the validation techniques are
presented by each process in accordance with the level of SSIL. The evaluation

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

514 Risk Analysis VI

of software safety suggested in this study extracted evaluation items to be
performed at the implementation, verification and testing, hardware combination
test, validation and assessment stages which are those following the software
design stage. In this section, the software safety requirements to meet IEC61508
are described.

2.1 Software safety integrity level

The evaluation of software safety is accomplished by validating whether the
software developed can satisfy the Software Safety Integrity Level (SWSIL)
given at the time of designing the software. SWSIL is not defined by software
autonomously, but determined to be identical to the Safety Integrity Level (SIL)
of the system applying the software. However, if it is possible to prohibit an
error in the software from propagating to the system, it was made to be
determined at a lower level than this. SWSIL is classified into five grades as
follows in accordance with the risk of system.

2.2 Method of safety validation in the development stage

The software development process presented by IEC62279 is composed of the
development process and validation process as shown in Fig. 1. The standards
present requirements to be satisfied at every stage, and as for the main
requirements, they present validation methods for requirement by dividing into
M (Mandatory), HR (Highly recommend), Recommend and Not Recommend,
etc. in accordance with SWSIL. In applying the techniques at testing, it is
recommended to use automated testing tools. The following are the arrangements
centred on the validation techniques required as M and HR in the case of SWSIL
4 grade, which is the highest safety grade among validation techniques presented
by standards.

Figure 1: Software development life cycle in IEC61508.

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

Risk Analysis VI 515

○Design and implementation of the software: In the process for design and
implementation of the software, the compliance with the coding rule and
black-box testing is required as M validation technique. As for the coding
rule required, the prohibition from using the dynamic objects and
variables, restriction to the use of the pointer and recursive function, and
the prohibition from using the unconditional jump were suggested.
○Software verification and testing: As for the verification and testing

techniques, the Formal Proof, probability test, static analysis, dynamic
analysis and Software Error Effect Analysis, etc. were suggested as HR
items.
○Software/hardware integration test: In the software and hardware

integration test stage, the function test, black-box test and the performance
test are required as HR level.
○Software Validation: In the validation stage, the performance test, function

test and black-box test are presented as M items, and the probability test is
presented as HR item.
○Software Assessment: In this stage, the purpose is to finally validate

whether development processors and developed software are satisfying the
SWSIL defined at the earlier stage of design. As for the validation
techniques to be used, the checklist, static analysis, dynamic, Fault Tree
Analysis, Software Error Effect Analysis and the Common Cause Failure
Analysis, etc. are suggested as HR items.

3 Requirements for the software safety evaluation tool

IEC62279 recommends using automated testing tools to validate software safety
for the train control system. The following requirements were drawn upon to
design automated tools evaluating the safety of the software.
①It must be able to validate the safety requirements of the international

standards in relation to the train control software.
This study drew the software safety validation requirements for the
international standards by analyzing IEC61508 and IEC62279. The
techniques that could be automated were drawn by analyzing the testing and
validation techniques that are required from the development stage of the
software lifecycle. It should be possible to use the test tool at every
development stage for the software, and it must be able to apply validation
items required by standards at each stage. Thus, if we use the tool to be
developed, the reliability of the development process can be enhanced since
we may validate whether it complies with IEC61508 or not objectively. The
drawn evaluation items are described in section 4.

②Various forms of test combinations must be performed in accordance with
the choice of valuator.
The tools to be developed are supposed to be used by software developers,
valuators and also certification institutions, and they must not only perform
the formalized test, but be able to compose tests in accordance with the

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

516 Risk Analysis VI

choice of users, so that certification institutions can apply the test techniques
used at the development process for the purpose of verification. It must be
able to combine necessary tests in accordance with the safety level being
tested, and in accordance with the development stage.

③The static analysis and dynamic analysis on the software must be available.
Most of the existing automatic testing tools for software are those for static
analysis based on the source code analysis. However, the importance of
dynamic analysis has been brought to the fore recently for the validation on
runtime characteristics that might not be verified with static analysis. For the
dynamic analysis, it is necessary to develop agent programs that are viable at
the embedded target board with high universality.

④The results of the main safety activities at the design stage must be utilized
by the test tool.
The existing automatic software testing tools have been used for the purpose
of enhancing reliability, and though they can be used for safety validation,
they do not provide the additional function of safety validation. Since testing
tools were designed to input test cases directly by users or create them
randomly, it is difficult to ensure the linkage between the results of safety
activities to be performed at the design stage and developed products. To
solve this problem, it is essential to have the function enabling to validate the
results of the Fault Tree Analysis, or Hazard and Operability (HAZOP)
analysis being used at the design stage of the development stage. Therefore,
in the newly developed safety evaluation tool, we enabled the function to
create and validate test cases by receiving the results of safety activities at
the design stage as inputs automatically through differentiating them from
existing software reliability testing tools.

⑤Testing tools must correspond with the international safety standards.
The safety test tool to be developed in this study can be used for the
certification of international standards, and for this purpose, the tool itself
must be certified also. Thus, the tool to be developed must also obtain the
certification of IEC61508 or DO-178B, etc.

4 Evaluation items for the software safety evaluation tool

In this section, the evaluation items selected to implement those among the
safety validation requirements defined in IEC 61508 and IEC62279 of the safety
evaluation tool are introduced. We selected those possible to implement as
automation tools among the validation methods required by standards
preferentially, and extracted those among the various techniques centered on the
validation methods prescribed as M and HR. To draw evaluation items, we
divided the techniques largely into a total of six steps from ST1 to ST6 by
focusing on the stages in relation to behaviours in which the implementations of
software are to be prepared or validated after being prepared, which are listed as
follows:

ST1: Software module testing stage
ST2: Software integration testing stage

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

Risk Analysis VI 517

ST3: Integration stage between hardware and software
ST4: Software validation stage
ST5: Software change validation stage
ST6: Software evaluation stage

 Each stage is the extracts of stages containing items to evaluate software from
software development stages of IEC61508. This standard, associated directly
with software for the train control system, requires automated tests at the main
software development stage, and the main development techniques and testing
techniques to be applied are defined in accordance with the safety integrity level
of the software. In the safety evaluation tool for software, this can be applied to
the software safety integrity level 4 for the highest safety among the integrity
levels, and we drew it as a requirement to be implemented with the tool for the
corresponding technologies whose usage was classified as M or HR only.

Table 1: Selected testing items.

Performance stage
Test techniques

ST1 ST2 ST3 ST4 ST5 ST6
Classification of
techniques

Performance testing x x x x Non-Functional
Boundary value
analysis x x x x x x Black-box

Equivalent classes x x x x x x Black-box
Design & coding
standard x x Maintenance

Control flow testing x x x x x x White-box
Data flow testing x x x x x x White-box
Fagan inspection x x Analysis
Symbolic execution x x Analysis
Checklist x Analysis
Metrics x x x Analysis
Decision table x Analysis
FTA x Analysis

 Table 1 shows 12 key testing items drawn in this manner. Table 1 prescribes
test items to be applied at each development stage of the software. For example,
the performance testing means that it can be used for the software module tests,
integration testing, hardware integration testing, and change validation stages.
The evaluation items can be classified into three techniques such as white-box
testing, black-box testing and source code analysis in accordance with the
evaluation technique. The white-box testing and black-box testing are dynamic
testing methods executing and analyzing software at the target, and the source
code analysis technique is the static analysis method at the state of not executed
software. The white-box technique corresponds to the case where it is possible to
use the information on the internal architecture of the software that is the object
of the test at the time of testing, and the black-box is the opposite case. The test

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

518 Risk Analysis VI

items to be implemented by white-box testing are the performance test, control
flow and data flow test. The performance test is the one carrying out the
hardware processing capability and resource state required at the time of
implementing the software in the form of dynamic testing software. In the
control and data flow testing, it tests whether any unused code or data area has
occurred by tracking down the control flow and data flow of the software.
 The black-box testing is composed of the boundary value analysis and
equivalent class testing. The boundary value analysis testing is the test that has to
be applied to all of the six software development stages defined in this section,
and it inspects the software errors occurred at the limitation or boundary of the
parameters. The equivalent class testing is the test detecting any error based on
the input variable by using the minimum test data. To do this, it is important to
regulate test data so that the whole range of input values can be included. As for
the static analysis method, it includes general functions provided by existing
analysis tools for software. In Fagan inspection, it is the automation of the
inspection on general software performed by external specialists, and the Metric
analysis refers to the measurement of unique characteristics of software such as
reliability or complexity by analyzing the structural characteristics of software.

5 Architecture of the software safety evaluation tool

In section 4, we presented evaluation items for software safety that are required
to be automated by analyzing relative international standards. In this section, we
explain the architecture design of the safety evaluation tool for software.
 The software safety evaluation tool for the train control system is composed
of the automatic creation tool for the test case, the automatic test performing and
monitoring tool, and the target testing agent. Since the train control system has
the characteristics of an embedded control system, it is necessary to design the
architecture for the software test tool that is being tested and monitored through
the testing agent program of the actual target board where the applied software
was ported. Therefore, the test tool is being inputted by converting the safety
analysis data of the software targeted for evaluation by using the conversion
module for source code and input data, and creating test data and scenarios by
using the automatic test data creation module and automatic test scenario
creation module on the basis of the input source code and safety analysis data.
 The test results will be analyzed by performing the testing through the
automatic test performance and monitoring module and target testing agent, and
it has the architecture to store the results on screen and on file. Fig. 2 shows the
process of using the safety testing tool being suggested. Fig. 3 shows the main
function of the testing tool by stage, and Table 2 shows the function of the test
tool and output.
 The definitions for the function of the main stage of the testing tool are as
follows:
- Program analysis: Creates function information, type information, control

flow and call information among functions necessary for the test through
program analysis

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

Risk Analysis VI 519

Figure 2: Software safety testing flow.

Figure 3: Software testing tool system design.

- Input division: Creates information on the input data division by data type
on the basis of information obtained through program analysis

- Test scenario creation: Creates a test scenario automatically, and it also
enables the user to create a test scenario (script)

- Driver creation: Creates drivers connecting the test target code with the test
engine and the program where the test will be carried out

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

520 Risk Analysis VI

Table 2: Functions of software testing tool.

Classification Detailed
classification Output

Function and API list
Control flow graph by function
Call graph among functions

Program analysis Analysis

Data architecture
Type division Division by data type

Variable division Division by variable
Scenario Test scenario

Test case
Creation

Driver Test driver
Test program Compile &

Build Build
Target image
Result of performance by test case
Test coverage Test performance Execution
Error diagnosis

Analysis on
results Report Test report

- Execution: Performs the test and summarizes test coverage, details the test
by each section and test results, and presents error locations, and gives the
tool the function to report detailed results by test case to the user.

- Preparation for report: Creates the report on all the test information and
results in accordance with the user’s option

6 Conclusion

This paper suggested the safety evaluation software tool for a train control
system. The suggested evaluation tool has the form of expanding the existing
automated software test tool, and the evaluation items required by standards are
performed in the form of a dynamic test using the results of safety activities
derived from the software development cycle as the input. We made it include
key evaluation items required by international standards, and used them during
the development lifecycle of the software. We added the function to validate
whether the safety is maintained or not continuously by using the results of
safety activities performed at the software design stage as the input into the
testing tools.
 If the testing tool for embedded software having the suggested architecture is
developed, it is anticipated that it will be very helpful for the evaluation of the
software for train control systems.

References

[1] Matsumo, M., “The Revolution of Train Control System in Japan”,
Autonomous Decentralized Systems, ISADS Proceedings, 2005.

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

Risk Analysis VI 521

[2] Lawson H. W. et al, “Twenty Years of Safe Train Control in Sweden”,
Engineering of Computer Based Systems, Proceedings. 8 Annual IEEE
International Conference and Workshop on the, 2001.

[3] International Electrotechnical Commission (IEC), “61508 - Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-Related
Systems”, 1999.

[4] Younju Oh et al., “Software Safety Analysis of Function Block Diagrams
using Fault Trees”, Reliability Engineering & System Safety, 2005.

[5] Robyn R. Lutz and Robert M. Woodhouse, “Bi-directional Analysis for
Certification of Safety-Critical Software”, proceedings of 1st International
Software Assurance Certification Conference, Dulles, Virginia, February,
1999.

 © 2008 WIT PressWIT Transactions on Information and Communication, Vol 39,
 www.witpress.com, ISSN 1743-3517 (on-line)

522 Risk Analysis VI

