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Abstract

This paper focuses on the simulation of the impregnation stage of the Resin
Transfer Moulding (RTM) process. RTM is a method of producing composite
structures by binding the fiber preform with resin within a closed mould. A
fiber layup consists of layers of textiles, which may have different material
properties. As a result of placing the fiber layup into the mold, the textile layers
get deformed and distorted. A key influencing parameter for the resin flow is
the textile permeability, which is coupled to the fiber volume ratio (FVR) and is
anisotropic in general. Affected by the deformation and distortion, the FVR can
vary from nearly zero to a value of approximately 0.6. Therefore volume-averaged
Navier–Stokes equations with variable FVR are developed. The resistance to the
flow through the fiber materials, which are modeled as a porous media, is given by
Darcy’s law. For predicting the macroscopic permeability, a unit-cell impregnation
model is introduced. This model takes into account the mesoscopic structure of the
porous media, i.e. the roving layout. Since the permeability of a fiber preform is
direction-dependent, a transformation with respect to the local fiber orientations of
the considered technical component is performed. This implementation allows a
three-dimensional simulation of the impregnation stage of the RTM process taking
into account the modification of the fiber layup caused by placing it into the mold.
The required input will be provided by an external drape simulation, which is
however not part of this work. Results will be presented for a eninge bonnet like
geometry.
Keywords: Resin Transfer Moulding (RTM), permeability, multi-scale modelling,
unit-cell, volume averaging method, fabric/textiles.
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1 Introduction

Composite structures manufactured by the Resin Transfer Moulding (RTM)
process are lightweight structural elements, capable of withstanding high stresses
and they are used e.g. in the aerospace or automobile industry. RTM is a method of
producing composite structures by binding the fiber preform (typically fiberglass,
carbon or aramid) using a resin (epoxies, polyamides, polyesters or phenolics)
within a closed mould. To withstand high stresses the quality of the manufacturing
of the technical parts is of great importance. The part has to be void free and all
fibers need to be wetted by the resin. Therefore knowledge of the resin flow during
the injection stage of the RTM process is crucial. Darcy’s law is commonly used
to describe the flow through a porous media,

q =
−κ
µ
∇P, (1)

where q is the so called Darcy flux, ∇P is the pressure gradient and µ is the
dynamic viscosity of the fluid. The resistance of the porous fiber material to the
resin flow is usually expressed in terms of a directional permeability κ and is a key
influencing parameter. The fluid velocity u is related to the Darcy flux q by

u =
q

φ
, (2)

where φ is the porosity, which can be defined as φ = V
Vt

. In this equation Vt is
the total volume and V is the volume of the voids. A fiber layup consists of layers
of textiles, which may have different material properties. The textile permeability
is in general anisotropic and coupled to the fiber volume ratio (= 1 − φ). When
placing the fiber layup into the mold, the textile layers get deformed resulting in
local fiber volume ratio (FVR), which may vary from nearly zero (e.g. at corners)
to approximately 0.6. In a microstructural framework, where each filament of a
roving is resolved, the resin flow is described by the Navier–Stokes equations.
For a three-dimensional simulation of the impregnation stage of the RTM process
Navier–Stokes equations including a macroscopic description of fiber materials by
porous media of corresponding properties are needed. Individual rovings or even
filaments can not be considered in this context. The macroscopic fluid velocity u is
coupled to the FVR (Eq. (2)) since only a fraction of the total volume is available
for fluid flow. The resistance to the flow caused by fiber materials, the sink term
in the macroscopic Navier–Stokes equations, is modeled with the Darcy equation
(Eq. (1)). For Darcy’s law the permeability κ is required.

The permeability is a local parameter of the textile and depends e.g. on the
geometry and the orientation of the fibers. One can obtain the permeability by
experimental investigations. To fully determine the permeability tensor for one
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mechanical condition of the fiber material (grade of shearing and compression,
etc.), which might be obtained by a draping process, three injection experiments
have to be carried out with the direction of injection (e.g. the pressure gradient
for injection) aligned with one of the spatial directions, respectively. Hence, a
large amount of experimental work has to be done in order to characterize the
prevailing permeabilities of a fiber material for an application. An alternative
is to determine the permeability by simulations. To fully take into account the
microstructure of the textile, a very fine computational mesh would be needed,
leading to an unacceptable amount of computational costs. Since we are interested
in the macroscopic resin flow the determined permeability should take into account
the mesostructure of the fiber material, i.e. the orientation, the cross-sectional
shape and the way of weaving of the rovings. Therefore a known expression
for calculating the permeability of uni-directional (UD) fibers is used inside the
rovings, which are composed by aligned filaments (microstructure). Due to the
regularity of the textile, the permeability is predicted by employing an unit-cell
impregnation model. Using known local parameters like shear angle, compression
and orientation of the rovings, the permeability of the fiber material can be
provided as an input parameter for the macroscopic sink term (Darcy’s law).

The paper is structured as follows. In Section 2 the multiphase flow model is
presented. The different unit-cell models and the resulting permeability tensor
are explained in Section 3. Section 4 exhibits some simulation results with our
software. Finally, some remaining issues are discussed and the conclusion is given.

2 Multiphase flow model

We consider a two phase fluid flow in a porous media. In particular this means that
we have three phases k: f fluid, g gas and the solid matrix s. At the microstructure
level the flow of phase k is described by the following mass and momentum
equations:

Mass
∂ρk
∂t

+∇ · (ρk~vk) = 0 (3)

Momentum
∂

∂t
(ρk~vk) +∇ · (ρk~vk~vk) = −∇P +∇ · τk + ~Fk (4)

where τ = µk(∇~vk+(∇~vk)T ) is the shear stress tensor with viscosity µk, ~F is the
body force and ~vk is the velocity vector of phase k at micro scale. Since knowledge
of the resin flow at macro scale is needed, to avoid voids and to guarantee that
the resin is well distributed, the set of equations (3) and (4) is homogenized. We
provide a brief review of the idea of volume-averaging techniques by following
Whitaker [1] and Bear [2]. For more details the reader is referred to the references
[3–5]. We take a representative elementary volume occupied by the three phases,
whose interfaces may move with time

V0 = Vf (t) + Vg(t) + Vs(t).
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The volume V0 is defined as an arbitrary volume chosen large enough to be
statistically representative and small enough to regard spatial variance in the
porosity. The definition of the superficial volume average 〈θ〉0 and the intrinsic
volume average 〈θ〉k of a transport quantity θ in phase k is given as

〈θ〉0 =
1

V0

∫
V0

θξk dV, 〈θ〉k =
1

Vk

∫
V0

θξk dV,

here ξk denotes the phase function and Vk is the volume fraction of the total
volume V0 occupied by phase k. The phase function ξk has the value 1 in the
phase k and zero elsewhere. The deviation of the intrinsic volume average is
defined as {θ} = θ−〈θ〉k. It is zero when θ is uniformly distributed. An important
relationship is the following〈θ〉0 = εk〈θ〉k, where εk = Vk/V0 is the part of the
volume filled with phase k. The porosity φ = εf + εg is assumed to be constant
with respect to time (∂φ∂t = 0) but not spatially constant. Applying the averaging
formulae, Eqs (3) and (4) obtain the following form:

Mass
〈
∂ρk
∂t

〉
0

+ 〈∇ · (ρk~vk)〉0 = 〈0〉0 (5)

Momentum
〈
∂

∂t
(ρk~vk)

〉
0

+ 〈∇ · (ρk~vk~vk)〉0 = 〈−∇P 〉0 + 〈∇ · τ〉0 + 〈~F 〉0. (6)

The following assumptions are made in this paper:
• The control volume is stationary. Since Sff and Sgg , the interfaces on

the respective surface (here fluid-fluid or gas-gas) coincide with the outer
boundary of the control volume, ~ωff or ~ωgg , the velocity of microscopic
points on the respective surface is equal to zero.
• The fluid and the gas are incompressible. The density is assumed to be

constant with respect to time and space and thus {ρk} is zero.
• The porous structure is rigid (constant with respect to time) and has the no-

slip boundary condition. This means ~ωfs and ~ωgs are equal to the velocity
~vf and ~vg at the fluid/gas-solid interface. Additionally, the porous structure
is stationary, therefore ~ωfs = ~ωgs = 0.
• The fluid and gas phase are Newtonian fluids, this means µf and µg are

constant and the deviation {µk} is zero.
With these assumptions the averaging rules, as derived by Slattery [6],
Whitaker [1] and Bear [2], are applied to Eqs (5) and (6). Then for the fluid phase
the equations read

Mass∇ · (εf 〈~vf 〉f ) = 0 (7)
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Momentum
∂

∂t
(εf 〈ρf 〉f 〈~vf 〉f ) +∇ · (εf 〈ρf 〉f 〈~vf 〉f 〈~vf 〉f )

+∇ · (εf 〈〈ρf 〉f{~vf}{~vf}〉f ) +
1

V0

∫∫
Sfg

(ρf~vf )(~vf − ~ωfg) · ndS

= ε∇〈P 〉f +
1

V0

∫∫
Sfs

{P}ndS +
1

V0

∫∫
Sfg

{P}ndS (8)

+∇ ·

εf 〈µ〉f
∇〈~vf 〉f + 1

Vf

∫∫
Sfg

~vf ndS




+
1

V0

∫∫
Sfs

(µ∇~vf ) · ndS +
1

V0

∫∫
Sfg

(µ∇~vf ) · ndS + 〈~F 〉0.

The Eqs (7), (8) and all subsequent equations look the same for the gas phase with
the corresponding indices. Following Bear and Bachmat [4], it may be assumed
that | 〈〈ρf 〉f{~vf}{~vf}〉f | � | 〈〈ρf 〉f 〈~vf 〉〈~vf 〉〉f | and therefore the corresponding
term in Eq. (8) will be disregarded.

For passing over to the one fluid formulation, Eqs (7) and (8) for the fluid phase
and the gas phase are summed up. Let us consider the surface integrals (momentum
Eq. (8)). There are two kinds of boundaries (fluid-gas surfaces and fluid/gas-
solid surfaces). The interaction between fluid/gas with the solid, represented by
the surface integrals Sks for k = f, g, together with the body force ~F can be
interpreted, following [3], as Darcy’s law. In the governing Eqs (10) Darcy’s law is
written as the sink term S = −

(
µ
κ

)
~u, since the equation implies a pressure drop.

The surface integrals Sfg in Eq. (8) of the fluid-gas surface combined represent the
surface tension [7,8]. However, in this paper the surface tension is not considered.
Defining a mixture density ρ and a center-of-mass velocity ~u

ρ = εfρf + εgρg, ~u =
1

ρ
(εfρf~vf + εgρg~vg)

and introducing these definitions into the one fluid formulation reduces it to the
compact form

Mass∇ · (φ~u) = 0, (9)

Momentum
∂

∂t
(φρ~u) +∇ · (φρ~u~u) = φ∇P +∇ · (φµ∇~u)

+∇(φ~u) · ∇(µ)−
(µ
κ

)
~u. (10)

To exclude misunderstandings all variables are homogenized by the volume
averaging method with spatially variable porosity φ. These governing equations
(Eqs (9) and (10)) are implemented in OpenFOAM [9]. A closure for the jump
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terms occurring in the one fluid formulation is not known in the literature.
Therefore these terms are neglected according to [3, 7, 8].

3 Modeling permeability

The aim of the macroscopic flow simulation of the impregnation process is to
ensure the quality of the composite material. In the previous section we introduced
the volume-averaged Navier–Stokes equations. As an input parameter a local
(macroscopic) permeability for every grid cell is needed. Simulations of resin
flow through characteristic unit-cells of specific structure are carried out, see
e.g. Fig. 2(a), to derive properties of corresponding porous media. The required
geometrical parameters for the unit-cell model like the roving orientation, shear
angle, thickness of the layer and the FVR are assumed to be provided by a draping
simulation, which is not part of this work. Following Darcy’s law (Eq. (1))qxqy

qz

 =
1

µ


κxx

∂P
∂x + κxy

∂P
∂y + κxz

∂P
∂z

κyx
∂P
∂x + κyy

∂P
∂y + κyz

∂P
∂z

κzx
∂P
∂x + κzy

∂P
∂y + κzz

∂P
∂z

 ,

here in tensor notation, all components of the permeability tensor κ for a
saturated porous medium can be determined by performing three stationary
flow simulations. By applying a prescribed mass flow q in one spatial direction
and periodic boundary conditions for the two remaining spatial directions, the
pressure loss, or pressure gradient, in the main flow direction can be obtained.
By performing two additional flow simulations of similar setup, where only
the direction of the main flow has been changed, all components κij of the
permeability tensor can be determined. In doing so, the main diagonal contains
the important information and the off-diagonal terms should be nearly zero.

In order to limit the computational costs, the flow inside the rovings
(microstructure), which are composed of aligned filaments, is modeled by a porous
media consisting of unidirectional fibers. The permeability of this UD-structure
can be determined employing the model of Gebart [10], which takes into account
either quadratic or hexagonal fiber packing, geometric dimensions of the filaments
in the roving and the porosity. The permeabilities are predicted as follows

κ| =
8R2

c

(1− Vf )3

V 2
f

, κ⊥ = C1

(√
Vfmax

Vf
−− 1

)5/2

R2,

where κ| describes the permeability along the fibers and κ⊥ describes the
permeability perpendicular to the fibers. In this equations R is the radius of the
filaments, Vf is the fiber volume with its theoretical maximum Vfmax

, and c is a
shape factor. The parameters C1 and Vfmax

depend on the fiber packing (quadratic
or hexagonal). The model parameters are summarized in Table 1.

In this paper the biaxial carbon fabric HPT-610 (SGL Carbon) having roving
angles of ±45◦ is examined. The material data is summarized in Table 2. A
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Table 1: Parameter for the permeability model of UD-fabrics according to Gebart.

Fiber packing C1 Vfmax
c

Quadratic 16

9π
√

(2)

π
4 57

Hexagonal 16

9π
√

(6)

π

2
√

(3)
53

Table 2: Material data of the fabric HPT-610.

φ R

Roving 0.207 710−6 m
Sewing thread 0.5 10−5 m

computed tomography (CT) scan of HPT-610 (Fig. 1) shows two layers of rovings
aligned perpendicular to each other of half elliptical shape and a sewing thread
is clearly visible. For generating a unit-cell, the CT-scan delivers a far too
complex geometry, featuring details like individual filaments. Based on this data,
the generation of approximate computer meshes to be used for finite-volume-
based CFD-tools is very challenging. Therefore a simpler approach is sought.
The simplest unit-cell model is the “brick-model” (Fig. 2(a)) with rovings of
rectangular cross section and without sewing thread. In all figures of unit-cell
models presented in this paper, the red area denotes the +45◦ oriented fiber and
the green area the −45◦ oriented fiber. The sewing thread is shown in blue and
the channel between the rovings is highlighted in yellow. The roving permeability
is computed by Eqs (3) by using the material parameters given in Table 2 and
assuming a hexagonal fiber packing.

Figure 1: CT-Scan of HPT-610 fabric specimen by H. Finckh, ITV Denkendorf.

We start with the examination of the influence of the sewing thread on the
macroscopic permeability. Since considerable flow is expected to run through the
channels between the rovings and the sewing threads are present blocking some of
them, the permeability should decrease. The question is, how much influence has
the sewing thread on the permeability and is it negligible. In contrast to Fig. 2(a),
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the second “brick-model” (Fig. 2(b)) contains a sewing thread. The sewing thread
is considered also as an UD reinforcement and therefore its permeability is
predicted by Gebarts model. Again we presume a hexagonal packing and use the
parameter from Table 2. To investigate the influence of deformation and distortion,
which are a result of the draping, the unit-cell was sheared. By shearing the setup
of the rovings, the channels between the rovings obtain a different shape. Due to
this it should have a great influence on the textile permeability in the horizontal.
The effect on the permeability in the perpendicular (y-axis), since there is no
major geometrical change, should be small. For the first analysis of the effect of
distortion, the rovings are arranged at a ±30◦ angle to the middle (60◦ angle to
each other). A better approximation of the CT-Scan of HPT-610 (Fig. 1) is the
ellipse-model (Fig. 4) with two layers of rovings right-angled to each other of half
elliptical shape and with a sewing thread. Due to the elliptical shape of the rovings,
the separating channel between them is larger, the mass flow in this channel will
increase and the permeability rises (see Table 3).

(a) without sewing thread (b) with sewing thread

Figure 2: “Brick-model” of a unit-cell of the fabric HPT-610. (Red: fiber +45◦;
green: fiber −45◦; blue: sewing thread; yellow: channel between the
rovings.)

Table 3 compares the calculated permeabilities for all presented models in this
work. The suffix of the permeability tensor in this table denotes the angle between
rovings and center, e.g. ±45 is the undistorted HPT-610. As assumed, the off-
diagonal entries are small compared to the main diagonal and therefore the main
entries are highlighted.

It starts with the tensor for the brick-model with (Fig. 2(b)) and without
(Fig. 2(a)) sewing thread and it can be clearly seen that the sewing thread has
an impact on the permeability tensor. The κyy entry without sewing thread is by
10 percent larger then with the sewing thread. This is considered a non negligible
influence so that it should always be considered.

The results (see Table 3 among κ±30) of the sheared brick-model (Fig. 3)
confirm our expectation. The permeability tensor entry κyy is unaffected in
contrast to the entries κxx and κzz . The horizontal entries differ by −44% in
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Figure 3: Brick-model distorted fiber
angel ±30◦. R

Figure 4: Ellipse-model fiber angel

Table 3: Comparison of the permeability of the different models.

κ±45 with sewing thread3,4 · 10−11 2, 8 · 10−14 3, 0 · 10−14

7, 1 · 10−16 5,7 · 10−12 2, 3 · 10−16

7, 7 · 10−14 3, 3 · 10−14 3,3 · 10−11


κ±45 without sewing thread3,5 · 10−11 4, 7 · 10−14 2, 5 · 10−14

1, 1 · 10−15 6,3 · 10−12 3, 5 · 10−16

8, 2 · 10−16 1, 8 · 10−13 3,5 · 10−11


κ±30 with sewing thread1,86 · 10−11 1, 3 · 10−14 9, 2 · 10−13

4, 1 · 10−16 5,7 · 10−12 1, 6 · 10−16

3, 6 · 10−13 2, 1 · 10−14 4,8 · 10−11


κ±45 Ellipse-model3,5 · 10−10 2, 3 · 10−14 1, 8 · 10−15

3, 4 · 10−14 1,0 · 10−11 1, 6 · 10−15

2, 3 · 10−15 7, 1 · 10−15 2,7 · 10−10



x-direction and by +45% in z-direction, this means the associated macroscopic
flow is increased in z-direction and is reduced in x-direction. In order to ensure a
realistic resin flow simulation, the great influence of deformation and distortion on
the textile permeability should be considered.
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The last permeability tensor belongs to the ellipse-model (Fig. 4). The influence
is about one order of magnitude in x − /z-direction and about a half an order of
magnitude in y-direction.

In order to keep the runtime of a simulation of the impregnation stage of a
composite structure small, the permeability tensors are stored at a database. This
means the simulation of a permeability tensor has to be done only once for each
considered textile for different shears and compressions.

Finally, after determining the permeability a coordinate transformation of the
calculated tensor along the fiber orientation into the global coordinate system is
carried out in OpenFOAM.

4 Validation and application

We start with a verification of the implemented governing equations (9), (10). The
sink term in (10) is disregarded. In a first step a flow through a pipe was simulated
with constant inlet volume flow (0.1ms ) and zero gradient boundary conditions for
the velocity on the cylinder wall. The pipe (Fig. 5(a)) is split up into four segments
with different porosity and length. The first and last section have the same length
(l = 0.1m) and same porosity (φ = 1). The Second and the third area are both
0.4 m long but in section number two only one half of the total volume is available
for fluid flow (φ = 0.5) and in the third only one-fourth (φ = 0.25). Analytically,
the flow front should need 1 s for the first, third and last section to traverse, since
the velocity u = q

φ equals 0.1ms in the first and last segment and equals 0.4ms
in the third. The velocity in the second area is twice the inflow speed (0.2ms )
consequently it should need 2 s. In total the resin is supposed to passe through
the cylinder in 5 s. In the diagram (Fig. 5(b)) the velocity of the simulation and the
analytical solution are shown. The simulated velocity matches very well with the
analytical solution as well as the predicted passing time for the total cylinder and
for each segment. In the second verification step the implementation of Darcy’s
law was verified by comparing predicted and theoretical pressure drop in a pipe.
(Results are not shown here.)

Next we show a feasibility study of an injection simulation including a detailed
fiber layup. The geometry is a flat plate of dimensions 1.5 m × 1.5 m × 2.1 mm
(Fig. 6(a)), which is considered to be a simple representation of an engine bonnet.
The fiber layup consists of three UD-layers of HPT-610 rotated by 60◦. Each layup
is represented by three cells in height, so the whole composite structure is nine cells
high. As inlet a central injection port (2 cm × 2 cm) was used and outflow was
realised at the edges. Horizontal cuts in all cells (Fig. 6(b)) show a realistic flow
front at t = 27 s. The different preferred flow directions in each fiber layer caused
by the rotation of the permeability tensor are clearly visible. A more realistic
setup for the engine bonnet is depicted in Fig. 7(a). The orientation of the fiber
layup follows the geometry of the curved geometry. It consists of three UD-layers
of HPT-610 in height. In contrast to the previous case only the middle layers are
rotated by 45◦ in plane. The preferred flow direction in the rotated layer is pointing
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(a) (b)

Figure 5: (a) Pipe with four porosity segments. (b) Diagram of the simulated
velocity and analytical solution.

(a) (b)

Figure 6: (a) Fiber layup with 3 UD-layers rotated by 60◦. (b) Horizontal cuts in
all cells showing the flow front at t = 27 s.

(a)
(b)

Figure 7: (a) Geometry of the curved engine bonnet. (b) Flow front at t = 14 s
from underneath (laterally reversed).

to the back side. Due to the rotation of the middle fiber layer, the flow front on the
back side is ahead of the one on the front side (Fig. 7(a), Fig. 8).
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Figure 8: Flow front of Fig. 7 at t = 14 s.

5 Remaining issues and conclusion

5.1 Remaining issues

For better estimation of the influence of shear and compression on the
permeability, we are working on several unit-cell setups with different textiles
in order to setup a database. Considering the effects of dual-scale flow process
(unsaturated/saturated tows), for more details see [11,12], is also work in progress.
For validation of the unit-cell model the simulated permeability will be compared
to experimental data of an undistorted textile. Finally comparison of experimental
results for a realistic demonstrator with our implementation coupled with a drape
simulation is planned.

5.2 Conclusion

We have implemented macroscopic Navier–Stokes equations with spatial variable
porosity. The meso scale permeability of textile reinforcements is an important
input parameter for these equations. Due to the lack of experimental data, we
introduced an unit-cell impregnation model. Based on a CT-scan of the HPT-
610 fabric specimen, we generated different unit-cell settings and demonstrated
the influence of a sewing thread and distortion on the fiber layup. In order to
keep the computational cost of the simulation moderate, we propose to use a
database, that contains the permeability tensor for different textiles as a function
of local compression and shear. To fully take the local structure of the textile into
account, a coordinate transformation of the permeability along the fiber orientation
is carried out. It was shown that our approach (Navier–Stokes equations + unit-
cell permeability) allows a three-dimensional simulation of the impregnation stage
of the RTM process with respect to the modification of the fiber layup caused by
placing it into the mold. Therefore this implementation can be coupled with an
external drape simulation.
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