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Abstract 

In the present work the Direct Quadrature Method of Moments (DQMOM) has 
been implemented into the CFD code TransAT. The TransAT code is a finite 
volume solver, based on structured multiblock grids, with a focus on multiphase 
flow modelling: including two-phase interface tracking, Lagrangian particle 
tracking and multiphase mixtures with an algebraic slip model generalized for an 
arbitrary number of phases (N-phase ASM). The DQMOM technique was 
combined with the turbulent N-phase ASM model in order to extend its ability to 
handle dispersed phase populations with each class having its own velocity field. 
In the scope of this work the DQMOM implementation has been validated by 
performing 0D, 1D and 2D test cases – from unit tests to very complex problems 
such as bubble columns. The drag force acting on the bubble population, 
turbulent dispersion, bubble aggregation, breakage and growth phenomena were 
considered. The results show that DQMOM is an efficient method for solving 
complex multiphase problems, and allows more sophisticated modelling than 
ASM. However attention should be paid to proper implementation into a CFD 
framework, especially when it comes to mass conservation, realizability of 
DQMOM abscissas and discretization of stiff particle interaction kernels. 
Keywords: DQMOM, multiphase flow, mixture model, population balance, 
bubble column. 
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1 Introduction 

In a typical bubbly flow application, various coupled phenomena can occur 
simultaneously, such as bubble coalescence and breakup due to interactions 
between bubbles. Almost all interactions occur in the presence of turbulence or 
hydrodynamic mixing, which usually dictate their rate. Under such conditions, 
the assumption of constant bubble size may lead to incorrect predictions of  
gas–liquid multiphase flow behaviour. The evolution and creation of bubbles of 
different sizes requires the representation of the particle size distribution 
function. This is typically achieved by the Population Balance Models (PBM), 
where the statistical distribution of the dispersed phase can be tracked. The  
N-phase model with algebraic slip between phases as implemented in TransAT 
[1] needs to be extended in this regard. Since the N-phase model solves for the 
volume fraction of each phase, a natural way to extend it would be direct 
discretization of the distribution into a number of size bins with birth and death 
terms accounting for processes such as breakup, coalescence, growth, etc. [2, 3]. 
     Among the other available PBM methods, such as the Method of Moments 
(MOM), Quadrature Method of Moments (QMOM) and their different variants 
[4], Direct Quadrature Method of Moments (DQMOM) [5] is chosen in this 
study. The main reason to not use the direct discretization method is the fact that 
moment-based methods are more efficient in capturing the distribution function 
[6]. It has been shown that whereas 12–18 bins were required for the direct 
discretization method, equal or more accurate results were obtained with only 6 
moments using the QMOM method. However, the QMOM method remains 
difficult to implement because the moment equations are directly solved, whose 
closure requires the recreation of the quadrature nodes and weights from the 
moments. Also, the velocity field associated with a given moment is difficult to 
interpret if it depends strongly on the internal coordinate of the population 
balance equation; as is typically the case for bubbles of widely different sizes. 
     DQMOM, on the other hand, directly solves for the nodes and weights of the 
quadrature approximation instead of the chosen moments, and is therefore easier 
to implement, still offering good accuracy at acceptable computational effort [7]. 
This is important in the N-phase context wherein the population balance might 
need to be solved for multiple dispersed phases. This paper presents the 
implementation of DQMOM into TransAT along with several validation cases 
and application to a bubble column. 

2 Mathematical model 

In order to describe the dynamics of N-phase flows an Algebraic Slip Model 
(ASM) extended to N-phases is used in the present work. Within this framework 
the DQMOM method is used to capture the most important properties of the 
dispersed phase like bubble size, void fraction or interfacial area. In this study, 
only the population of one of the phases is represented using DQMOM. 
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2.1 N-phase Algebraic Slip Model 

The N-phase ASM represents multiphase flow in an ensemble averaged sense, 
where the involved phases move at different or equal velocities under the 
assumption of equilibrium within short spatial length scales [1]. The model is 
given in the form of one mass conservation equation for each of the N phases 
and one momentum conservation equation for the mixture, see eqns (1), (2) 
below. Momentum conservation equation may contain additional terms to 
account for velocity differences between the phases. The relative velocities must 
be computed from the force balance for the dispersed phases. The N-phase ASM 
for incompressible isothermal flow reads as follows: 
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     The velocity associated with the phase k  is a sum of mixture, drift and 

turbulent drift contributions coming from components ( ) ( ) ( )m d td
jk j jk ju u u u     

respectively. In the above equations, k  is the volume fraction of phase k , 
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ijS  is the shear rate tensor for the mixture, m  is the mixture viscosity given 

by a rheological law, t  is the turbulent eddy viscosity, ig  is gravitational 

acceleration, and M   represents the effect of surface tension (ignored in our 
consideration). If l  is the dispersed phase and k  is the continuous phase, then 

the drift velocity of phase k  is given as ( )
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which represents the balance between the drag and buoyancy forces. Here dC  is 
the drag coefficient and lR  is the radius of the dispersed phase. Note that for the 
ASM model, lR is an input for each phase and remains constant. 
     For incompressible flows, the mixture continuity equation is given as, 
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where ( ) ( )td
j t j m t mu Sc     is the turbulent drift correction, and /t tSc  

denotes the mixture turbulent diffusivity, tSc  is the turbulent Schmidt number, 
and t t m    is mixture eddy viscosity. Eqn (4) represents the global volume 

balance and is used to derive the pressure correction equation. Turbulence is 
modelled with the standard k   model for the mixture. 

2.2 Direct Quadrature Method of Moments 

DQMOM has recently become a very attractive approach for solving population 
balance equation (PBE) thanks to its capability of representing the most 
interesting properties of the population, e.g. mean diameter, void fraction, and 
number of particles. For many physical processes the representation of different 
phases simply by a volume fraction is not sufficient - especially problems 
involving phase change or mass transfer between involved phases, where the 
dispersed particles size changes. 
     The main idea behind using DQMOM is based on direct tracking of the 
weights c  and weighted abscissas  c c   appearing in the quadrature 

approximation for the first 2 cN  moments of the discrete phase distribution. In 
the univariate version, DQMOM is developed for cN  classes of internal variable 
(abscissa) c , which in our case represents the dispersed phase diameter. The 

volume fraction of the c -th class is given as 3
  c V c ck    and the shape factor 

/ 6Vk   for spherical particles. 
     The following system: 

 

( ) ,

( ) , 1,..., ,

c c
jc c x c

j j j

c c jc c c x c c c c
j j j

u D a
t x x x

u D b c N
t x x x

 


     

  
  

   

   
   

   

  (5) 

is solved with the use of the implicit solver in TransAT. When there is no 
inhomogeneity of the spatial distribution of abscissas (particle size c  for c -th 

class is not changing in space x ), the right hand side of eqn (5) can be simply set 
to zero. Otherwise the linear system (6) is solved with respect to diffusion 
correction term only kC . Let us recall that the velocity associated with c -th class 

is given in the same way as in eqn (2) for k -th phase as, ( ) ( ) ( )m d td
jc j jc ju u u u    . 

     The algebraic linear system for the RHS terms of eqn (5), namely ca  and cb , 
emerging from DQMOM framework reads as follows: 
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Here 1
1  ( 1) ( )cN k

ck x c c x c x cC k k D    
     is the diffusion correction 

source term for k -th moment of the distribution. xD  is the diffusivity in physical 
space and represents any diffusion source that may affect the simulation, such as 
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turbulent diffusion, molecular diffusion or numerical diffusion. The set of eqns 
(6) must be solved in each computational cell. 
     During the implementation of DQMOM into any CFD code, one can meet 
some difficulties regarding the aforementioned algebraic linear system ill-
conditioning. This especially can happen when two or more abscissas are not 
sufficiently distinct from each other within the same computational cell 
(singularity problem), and/or the weights or abscissas values tend to zero values. 
To overcome this problem we use a condition number based algorithm to detect 
singularities, and if they appear, we use local averaging from neighbouring cells 
for the source term calculation. For example if reciprocal of the condition 
number is lower than 1210 , we consider the matrix as ill-conditioned. The 
method to deal with very low values of the weights can be enforcing a certain 
fractional number of particles per unit volume, that the weights directly represent 
themselves, e.g. at least 1–5 particles so that their impact on the mixture 
composition is negligible for practical applications. 
     In order to couple the stiff kernels with the convection-diffusion step of the 
equations, we employ the fractional time stepping technique. In the first step we 
solve the system of eqn (5) without considering physical processes source term

kS . For the details how to compute kernels term kS  the reader can refer to [5]. In 
the second step we solve for physical processes like coalescence and breakage 
with the use of an ODE solver. Furthermore we use first-order scheme for each 
equation in the implicit solver to avoid problems with non-conservation as 
reported in [8]. 
     As was already described, due to time scale of coalescence and breakage 
processes, the system created by the kernels is often stiff. In order to deal with it, 
we use the Variable-coefficient Ordinary Differential Equation solver, with 
fixed-leading-coefficient implementation (DVODE) [9]. The solver calculates 
the following set of equations: 

 
* * *

* *( )
, , 1,..., ,c c c

c c ca b c N
t t

   
  

 
  (7) 

where *
ca  and *

cb  are evaluated from eqn (6) by considering physical processes 
present in kS  term. The (*) denotes intermediate state of the solution obtained 
after the convection-diffusion step. Here the kC  term is not considered since it is 
already applied in convection-diffusion update – diffusion time scale is typically 
much larger than breakage and coalescence processes. 
     In general, it can be shown that in the absence of dispersed phase interactions 
(DQMOM nodes remain spatially constant), the volume fraction advected via the 
ASM model and the volume fraction calculated for a given DQMOM class 
should match exactly. 

3 Validation and verification 

The validation and verification of DQMOM implementation have been done in 
several steps similar to the basic solution algorithm where the advection-
diffusion effects and the effect of source terms are solved through operator 
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splitting. First we validated homogeneous problems for DQMOM in zero-
dimensional space (unit test) where advection is not considered. Particles 
aggregation, breakage and growth have been considered and the obtained results 
were compared to the reference data [5]. We also tested mass transfer between 
dispersed and continuous phase in one test case, for the system of ozone and 
water. The next step is the verification of convection and diffusion of DQMOM 
weights and nodes, where the solution is compared to the ASM method; in the 
absence of bubble interactions, an exact match is expected. 

3.1 Unit tests for the kernels 

In order to validate DQMOM implementation several unit tests have been 
performed. Here we point out only basic cases, testing simultaneous aggregation 
and breakage; molecular growth and mass transfer for a spatially homogeneous 
system. 
     Firstly a homogeneous population of particles suspended in a fluid is 
modelled. At the initial state we set  1  2  31,  0.01      and

1 2 31,  2,  1.5     . The particles undergo hydrodynamic aggregation 

( 3 3
c c     ) and power-law breakage ( 30.02c ca  ) with symmetric 

fragmentation ( ( ) (3 )/32k k k
c cb  ). The evolution of the Sauter mean diameter is 

shown in fig. 1, where an exact match with reference data [5] is obtained. 
 
 

 

Figure 1: Hydrodynamic aggregation and power-law breakage with symmetric 
fragmentation with 3 classes. 

     Next we test DQMOM against molecular growth of mean crystal size with 
power-law kernel ( ( ) rG L L ). Initial conditions are set according to moments 

set 0 1 2 31,  1/ 2,  1/ 3,  1/ 4m m m m    . The result exactly matches reference 
data [5] as shown in fig. 2. 
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     In the further step we test the dissolution of ozone in water. It should be noted 
that not only does the bubble size reduce with time due to dissolution, but the 
mass transfer rate is also a function of the bubble size given by, 

 ( )satl
l l l

dC
m k a C C

dt
     (8) 

where 0.51.13( | | )l s gk D V d  is the liquid phase mass transfer coefficient (m/s) 

calculated according to the Higbie model and 6 g ga d  is interfacial area per 

unit volume (m2/m3) assuming spherical bubbles. We assume a constant slip 
velocity sV  equal 0.2m/s, initial bubble size gd  of 2mm, ozone molecular 

diffusivity D = 1.4E-9m2/s and saturation concentration of ozone in water sat
lC = 

0.004kg/m3. These values should be reasonable for ozone-water system under 
normal conditions. The evolution of the mass transfer rate with time is presented 
in fig. 3. Here one can observe noticeable discrepancies with respect to reference 
solution. This happens because the time step used for explicit integration of eqn 
(8), in order to obtain the reference solution, was set to arbitrarily high value of 
1s. 

 

Figure 2: Homogeneous molecular growth. Power law growth with 2 classes, 
r=1. 

 

Figure 3: Homogeneous mass transfer. Dissolution with 2 classes. 
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3.2 Verification of convection: phase separation problem in 1D 

A separation tank is simulated with gravity-driven phase separation (see fig. 4) 
between water and air phases. Initially 1/10th part of the tank is filled from the 
left side with air and water assuming equal volume fractions. The rest part 
contains water only. We split the air into 2 classes for DQMOM and into 2 
phases for ASM. We assume that the number of bubbles is the same for each 
class at initial state (weights are equal 1  2  ). From this assumption the initial 
gas volume fractions are evaluated to be 2 0.06   and 3 0.44  . The bubble 
sizes are initialized to 1mm and 2mm respectively. For DQMOM the initial 
bubble sizes should remain unchanged during the simulation, whereas in ASM 
the bubble size is not solved for. The slip between the phases is calculated 
considering the balance between drag force and buoyancy. Boundary conditions 
used in the simulation are slip walls. The simulation was run for 60s. The 
variation in gas volume fraction along the tank is shown in fig. 5. As expected, 
the gas phases segregate from each other due the difference in the slip velocities 
given by the different bubble sizes; the larger bubbles rise faster. The ASM and 
DQMOM simulations give exactly the same results. 
 

 

Figure 4: 1D test case with phase separation. Initial state. 

 

 
 

Figure 5: 1D phase separation problem: gas void fractions. Markers denote 
DQMOM solution, lines – ASM. 
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4 Bubble column 

In order to test the DQMOM implementation for a real problem including 
advection effects and interaction processes, a two-dimensional bubble column 
has been chosen. The configuration of the problem is similar as in Buffo et al. 
[10]. Air is injected into stagnant water from the bottom side of the tank with the 
velocity of 1.4236m/s. The boundary conditions are no-slip walls everywhere 
and pressure outlet at the top. The tank has a height of 2.16m, width 0.63m and 
air inflow width is set to 0.033m. A rectangular non-uniform grid with 
approximately 11,000 cells is used. Initially the tank is filled with water up to 
1.26m. 
     For the first 9s of the simulation we use the ASM model in order to reach a 
pseudo-steady state. A bubble size of 3.7mm was used for the ASM calculation. 
Then the ASM result at 9s (see fig. 6) is used as initial condition for the 
DQMOM simulation. Here we consider bubble coalescence and breakage by 
employing Laakkonen kernels [11] with their default constants. Furthermore, the 
standard k- model is employed here with standard wall functions. The inlet 
bubble population is assumed to have log-normal distribution with standard 
deviation 15% of mean diameter value (3.7mm). We use two classes 
representation of the bubbles population. Turbulence intensity at the inlet is 10% 
and the eddy viscosity ratio is set arbitrarily to 200. We consider drag and 
buoyancy forces acting on the bubbles as well as the turbulent dispersion effect. 
It is worth mentioning that each bubble class has its own slip velocity whose 
value depends locally on its size. 
 

 

Figure 6: Instantaneous gas volume fraction and stream traces coloured by 
velocity magnitude at time 9s. Pseudo steady state obtained with the 
use of ASM, used as initial state for DQMOM simulation. 

     It is clearly seen in fig. 7 that bubble distribution size varies with preference 
for breakage processes near to the injection region. In the rest of the 
computational domain coalescence dominates and therefore mean bubble size 
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increases. Because only gas is injected, the momentum of the jet is not strong 
enough to penetrate the whole water column and the jet velocity is close to zero 
in upper half of the tank. Due to this fact bubbles coalesce in low-velocity 
regions near the free surface and near the walls. The drift velocity and bubble 
size distribution field is shown in fig. 8. As expected the bubbles have different 
drift velocities which is the reason for bubble segregation in water. Fig. 9 shows 
the variation of the total gas volume fraction along the jet axis. Although the 
ASM results are very similar to the DQMOM results, the strong variation of 
bubble sizes indicates the utility of DQMOM in modelling exchange processes 
between the dispersed and continuous phases because, in general, they depend 
non-linearly on the bubble sizes. 

 

 

Figure 7: Instantaneous gas volume fraction, stream traces coloured by 
velocity magnitude and Sauter diameter at time 14s. 

 

 

Figure 8: Instantaneous drift velocity (m/s) field contours and abscissas 
(nodes) (m) contours for two DQMOM classes at time 14s. 

 WIT Transactions on Engineering Sciences, Vol 89,
 www.witpress.com, ISSN 1743-3533 (on-line) 

© 2015 WIT Press

308  Computational Methods in Multiphase Flow VIII



 

Figure 9: Instantaneous gas void fraction plot along the centreline Y (height of 
the tank) for ASM and DQMOM at time 9s and 14s respectively. 
Abscissas (nodes) (m) plots for two DQMOM classes at time 14s. 

5 Conclusions 

The paper describes fundamental details of N-phase ASM model and DQMOM. 
The first strategy is widely used for solving practical multiphase problems while 
the second one allows incorporating population balance in a feasible way and at 
a reasonable computational cost. Both methods are conservative for 
homogeneous and inhomogeneous problems. However special attention must be 
paid to proper implementation of DQMOM into a CFD framework. Especially 
for inhomogeneous systems, DQMOM formulation demands diffusion 
correction, as originally formulated in [5], to suppress non-conservation of 
moments higher than the first two. We have demonstrated that CFD–PBE based 
method is a powerful tool for solving complex problems like bubble columns. 
The next step will be to extend the model to a bubble column with mass transfer 
and validation by experimental data. From an application point of view, 
extension of the population balance model to handle multiple dispersed phases 
would be very useful. 
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