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Abstract

It has been observed both experimentally and numerically for relatively dense
suspension flows that small-amplitude oscillating Poiseuille flow results in particle
migration towards the high shear rate region of the flow field (pipe walls), whereas,
large-amplitude oscillating Poiseuille flow results in particle migration towards the
low shear rate region of the flow field (pipe centerline). To date, there has been
no satisfactory explanation as to why the period of oscillation has this effect on
the direction of particle migration. In the current paper, we demonstrate through
numerical simulation the same behavior in two-particle systems which provides
a first principle explanation of at least one cause for this phenomenon in dense
suspension flows. The numerical analysis is based on a semi-analytic solution for
the motion of two spheres suspended in arbitrary, unbounded shear flow.

1 Introduction

Particle motion in nonlinear shear flows is playing an important role in a variety of
developing technologies including the production of semiconductors and magnetic
recording media, processing of energetic materials, encapsulation of electronic
components, chromatography, secondary oil recovery by hydraulic fracturing,
carbon-dioxide sequestration, and transport of contaminants in semiconductor and
photomask technologies, to name a few. A common outstanding fundamental
research issue associated with these technologies is the development of
the relationship between microstructural interactions and macroscopic system
behavior.
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Experiments performed over the past 30 years have established that particles
suspended in nonlinear shear flows such as Poiseuille and Couette flows migrate
from regions of high shear rate and particle concentration to regions of low shear
rate and particle concentration [1, 2]. However, the underlying physics has not
been completely elucidated, resulting in less than satisfactory rheological models.
In particular, current rheological models have been deficient in several regards
including the scaling of particle migration rate with respect to characteristic
particle size, incorporation of slip boundary conditions, and nonisotroic effects
caused by particle agglomeration and chaining [3, 4].

Another shortcoming of current rheological models is that they all predict that
the particle migration direction will not change if the flow direction is reversed.
For large period oscillatory flows, although there will be some problems in the
short term transient as particle chains flip orientation, this is not a huge concern.
However, for small period pressure-driven oscillatory flows, it has been observed,
both through experiment [5] and numerically [6], that the direction of particle
migration actually switches towards the high shear rate region of the flow field.
That is, for example, in oscillating Poiseuille flow in a pipe, particles will migrate
towards the axis of the pipe (low shear region) if the period of the oscillation is
above a critical value and will migrate towards the pipe wall (high shear region)
if the period is below a critical value. The investigators who made this stunning
observation experimentally and numerically recognized that no current rheological
model captures this phenomenon. However, they did not put forward a theory to
explain it.

In the current research, we perform high-fidelity numerical simulations of a pair
of identical spheres in oscillating nonlinear shear flow. We are able to determine,
for a specified set of initial conditions a critical period above which the particle
pair will migrate towards the low shear rate region of the flow field and below
which the particle pair will migrate towards the high shear rate region of the flow
field. By analyzing the particle pair interactions, we put forward a theory for the
change of direction in suspension flows.

2 Numerical methodology

We presume in this research that the Reynolds number is small enough so that
both particle and fluid inertia can be ignored. Hence, the governing equation for
the fluid is the Stokes equation and the governing equations for the particles are
equilibrium and kinematic equations. The numerical method used to perform the
simulations in the current research is based on a semi-analytic solution for the
motion of two spheres suspended in an unbounded but otherwise arbitrary shear
flow [7]. The semi-analytic method is a vast generalization of classical bispherical-
coordinate solutions for two spheres moving along or perpendicular to their line of
centers, rotating about the centerline in a quiescent liquid, or suspended in linear
shear flow. The method is highly efficient and very convenient since the algorithm
does not require any local expansions of the ambient velocity field u∞(x), but
simply operates with the values of u∞(x) in the vicinity of the spheres, which
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can be calculated either by an analytic formula (e.g., for Poiseuille flow) or by
a user-provided routine for more complex cases. The method provides linear and
angular velocities as a function of position. Once the linear and angular velocities
are determined, the particles are repositioned in space using a third-order, variable-
time-step Runge-Kutta routine.

The governing equations considered in this research are kinematically
reversible, which, among other things, means that for purely Stokes flow driven
by periodic forcing or periodic boundary motion (e.g., Couette flow produced
by translation of a plate that then reverses direction and returns to its original
position), the net motion of any fluid particle over one period is zero.

Further, this particular numerical algorithm is extremely accurate, and hence,
the particle motions for presumed smooth spheres are essentially reversible. We
have shown previously that, in order to experience particle migration as observed
in experiment, both surface roughness and a nonlinear shear field are required [8].
Since we do want to study particle migration, we add a roughness model. The
roughness model considered in this research is essentially equivalent to the non-
locked model of DaCunha and Hinch [9] in which particles are not allowed to have
separations less than a specified roughness ε, but are allowed to rotate relative to
each other.

3 Results

We first consider the case of the interaction of two spheres of equal radius
in non-oscillating, nonlinear shear flow. The following definitions are useful in
characterizing these problems. The coordinates of the two particles are given by
(x1, y1, z1) and (x2, y2, z2). The initial center to center separations of the spheres
in the three coordinate directions are given by ∆x−∞, ∆y−∞, and ∆z−∞. The
shear plane is the x − z plane, the far-field velocity is in the x-direction, and
the initial separation is given by ∆x−∞ = −10a, where a is the sphere radius.
The quadratic ambient flow field is directed along the x−axis and is given by
u(z) = 1.083̄−0.75∗(z−0.66̄)2. The particles have initial x, y, and z coordinates
given by (−5.0, 0.0, 0.05) and (5.0, 0.0,−0.05). Upon approach (as shear brings
the particles closer together) the z-coordinate of the center of mass of the particle
pair, zcm, moves towards the low shear rate region of the flow field which is in
the positive z-direction. Upon separation (as the particle pair is split by shear), the
center of mass of the particle pair moves back towards the high shear rate region
of the flow field. Any particle roughness destroys the symmetry in the particle
pair trajectory, causing a net migration towards the low shear rate region. This is
shown in Fig. 1 where the vertical location of the center of mass of the particle
pair is plotted against the center-to-center separation in the x-direction, ∆x. As
seen in the figure, the z-coordinate of the center of mass, zcm, increases upon
approach (∆x < 0). That is, upon approach the particle pair migrates towards the
low shear rate region of the flow field. Upon separation (∆x > 0), the particle
pair migrates back towards the high shear rate region of the flow field. For smooth
particles (ε = 0), there is symmetry about ∆x = 0 so that the migration towards
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the low shear rate region upon approach is of the same total magnitude as the
migration back towards the high shear rate region upon separation resulting in
no net migration. The combination of particle roughness and the nonlinear shear
results in a net particle migration towards the low shear rate region of the flow field
as seen in the figure. It is also observed in the figure that the net particle migration
increases with increasing particle roughness.

Figure 1: Top: schematic of the interaction of two spheres in shear flow, showing
approach, contact, and separation. Bottom: the vertical location of the
center of mass, zcm/a, as a function of ∆x/a for two spheres suspended
in nonlinear shear flow with initial positions (-5.0,0.0,0.05) and (5.0,0.0,-
0.05). Plots for three particle roughnesses (relative roughness ε/a = 0,
10−3, and 10−2) are shown.

The reason for the net particle migration towards the low shear rate region
of the flow field is somewhat subtle. Particle roughness causes an asymmetry
in the particle trajectories: at a given angle between the line-of-center between
the particle pair and the ambient flow direction, roughness drives the spheres
slightly farther apart on separation compared to approach. However, at a specified
angle, the migration velocity actually increases with increasing separation. As an
example, Fig. 2 shows the absolute value of the average velocity of the particle pair
in the z-direction, | wcm |, as a function of the surface-to-surface separation, δ/a,
for the case in which the line of center of the particle pair makes an angle of 45o
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Figure 2: The average migration velocity, wcm, of the particle pair as a function of
inter-particle separation for the case where the angle between the line-
of-centers and the ambient flow direction is 45o.

with the ambient flow direction. Similar plots can be constructed at different angles
so that, at any given angle, the particle pair is always migrating faster towards the
high shear rate region upon separation than towards the low shear rate region upon
approach. This seems to contradict the end result that the net particle migration is
towards the low shear rate region of the flow field. The resolution of this apparent
contradiction lies in the fact that the time of approach is much longer than the
time of separation. The reason for this is that the particles approach each other
and, when the roughness limit is reached, the particles begin to roll over each
other separated by the roughness distance until their line of centers is vertically
aligned. At that point, the particles will separate in the horizontal direction as they
are no longer constrained by the separation distance. Ancillary to the particles
no longer rolling over each other is that the separation velocity in the horizontal
direction is significantly enhanced. For example, for the case considered in Fig. 1
with roughness ε/a = 0.01, the time of approach is 62.6 seconds whereas the time
of separation is 10.4 seconds. That is, the particles spend far more time migrating
towards the low shear rate region (albeit at a slower migration velocity) than they
spend migrating towards the high shear rate region.

Another way to look at the interaction between the two spheres in Poiseuille flow
is to plot the vertical location of the center of mass of the particle pair, zcm, as a
function of the absolute value of horizontal center-to-center separation, | ∆x |,
as shown in Fig. 3. As seen in the inset of the figure, there is a range of values
of | ∆x | for which the particle pair is actually closer to the high shear rate
region of the flow field on separation compared to approach. This is caused by
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the particles being slightly farther apart on separation compared to approach and,
for a given | ∆x |, migrating slightly faster towards the high shear rate region on
separation compared to approach. This offers a significant clue for the construction
of particle trajectories in oscillating Poiseuille flow with short periods such that the
particle pair actually migrates towards the high shear rate region of the flow field
as described below.

Figure 3: The vertical location of the center of mass, zcm/a, as a function of
| ∆x/a | for two spheres suspended in nonlinear shear flow with initial
positions (-5.0,0.0,0.05) and (5.0,0.0,-0.05). The inset shows details of
the graph for 1 < |∆x/a| < 2.

We consider particles starting at various positions associated with points on
the left side of the curve (∆x/a < 0) in Fig. 1 and then run the simulation
in the forward direction for twice the time it takes the particle pair to travel
from their initial position to ∆x/a = 0. The flow is then reversed for the same
amount of time and the net distance that the center of mass of the particle pair
travels, ∆zcm, is recorded. For the ambient flow field used previously, | u(z) |=
1.083̄− 0.75 ∗ (z− 0.66̄)2, the net permanent vertical migration, ∆zcm, is plotted
against the period of oscillation T in Fig. 4. As seen in the figure, the net permanent
migration changes sign at a critical period, Tc of approximately Tc = 22 seconds.
For periods of oscillation less than Tc, the net migration of the particle pair
is towards the high shear rate region of the flow field whereas, for periods of
oscillation greater than Tc, the net migration of the particle pair is towards the low
shear rate region of the flow field. In particular, we have removed the discrepancy
between the approach and separation time.
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Figure 4: The net permanent vertical migration, ∆zcm, as a function of oscillation
period, T .

This phenomenon of particles migrating towards the high shear rate region of
the flow field observed in Poiseuille flow has not been observed in oscillating
Couette flow, even though particle motion in oscillating Couette flow has been
extensively studied [10]. A conjecture as to why this phenomenon has been
observed in oscillating Poiseuille flow but not in oscillating Couette flow is put
forward here by considering a plot of particle separation versus average migration
velocity similar to Fig. 2. Specifically, we consider an ambient Couette velocity
field uθ = −r/3 + 1323/r and an ambient Poiseuille velocity field again given by
u(z) = 1.083̄−0.75∗(z−0.66̄)2. The Couette velocity field is actually taken from
previous physical experiments [4]. The angle that the line-of-centers of the particle
pair and the ambient flow direction is 30o in the case considered here. The average
migration velocity, wcm, is plotted as a function of the inter-particle separation, δ,
in Fig. 5.

Although the two curves in the figure are qualitatively the same, there are a
couple of interesting differences. For both the Poiseuille flow case and Couette
flow case, the migration velocity increases with increasing separation to a point,
reaches a maximum, and then decreases. It is this increase in migration velocity
with increasing separation that can result in, as discussed above, a net migration
towards the high shear rate region of the flow field for small period oscillatory
flows. However, the rate of increase with increasing separation is much smaller for
Couette flow compared to Poiseuille flow. Further, the maximum value of the inter-
particle separation δ/a for which wcm is increasing is much smaller for Couette
flow. In particular, this maximum value occurs at δ/a ≈ 0.005 for Couette flow.
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Figure 5: The average migration velocity of the particle pair as a function of inter-
particle separation for the case where the angle of the particle pair line-
of-centers with the ambient flow is 30o.

If the roughness of the particle is of the same order of magnitude, the reversal of
migration direction will not be experienced regardless of oscillation period.

4 Conclusion

The migration of a pair of spheres in oscillatory Poiseuille and Couette flow
has been carefully analyzed using a high fidelity semi-analytical solution of two
spheres in arbitrary shear flow. It has been demonstrated that the spheres migrate
towards the low shear rate region of the flow field on approach and towards the
high shear rate region of the flow field on separation. Particle roughness causes an
asymmetry in the trajectory of the center of mass of the particle pair, which results
in a net migration. In general, roughness causes the two spheres to be slightly
farther apart on separation compared to approach. There are two competing factors
for the net migration of the particle pair. The first factor is that the migration rate
at a given angle between the line-of-centers of the particle pair and the ambient
flow increases with increasing separation for moderate separations. This factor
contributes to the net migration being towards the high shear rate region of the
flow field. The second factor is that the separation time to cover a specified
| ∆x | is generally much shorter than the approach time for the same | ∆x |.
For non-oscillating flows, this second factor contributes to the net migration being
towards the low shear rate region of the flow field. For oscillating flows with large
period, the second factor is predominant whereas, for oscillating flows with short
period, the first factor is predominant. This analysis then presents a first-principle
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explanation for the observed change in migration direction for relatively dense
suspensions. It was also shown that, although it would be theoretically possible
to observe a reversal in migration direction for oscillatory Couette flow, it would
be difficult to observe in practice for two reasons. First, the increase in migration
velocity with increasing separation is very slight for Couette flow and, second, the
maximum separation for which this increase is observed may never be experienced
because of particle roughness.
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