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Abstract

Up to date most models predicting the voidage around bubbles in fluidized beds
assume a simple two-phase flow model. A classic example of a model using this
basic assumption is the Davidson and Harrison bubble model. In more recent
experimental studies it has been shown that there exists a shell of lower voidage
around a bubble in a fluidized bed. Better understanding of these phenomena might
play a significant role in understanding other very important effects associated with
bubbles in fluidized beds. An example of this might be better understanding the
wake of a bubble rising in a fluidized bed and also to better predict mixing in a
fluidized bed. The amount of contact between the gas and the solids in a gas-solid
fluidized bed is paramount for designing an effective fluidized bed reactor.

In the present study a model describing the voidage distribution in front and
behind a bubble in a fluidized bed was reexamined and extended. The model pro-
posed by Buyevich et al. used some basic assumptions and previously derived
models to compose the model. In the present study the model is extended to two
dimensions to give a non-uniform particle distribution around the bubble. Thus
voidage distributions all around the bubble could be determined. This new distri-
bution of the voidage could be used to determine a new form of the bubble surface
and thus a new boundary condition for the fluidized bubble.

The results from the model are compared with simulations carried out at the
TUC in Porsgrunn, Norway. The results are discussed and evaluated.
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1 Introduction

1.1 The momentum conservation equation and some basic assumptions

In some special cases the dispersed phase in a gas-solid fluidized bed may be mod-
eled as a dense gas [3]. The model extended in the present study is based on the
closure of the conservation equation for the dispersed phase in a fluidized bed
based on this dense gas assumption. Conservation equations for the mass, momen-
tum and fluctuation energy can be postulated in this manner but for the present
study only the momentum balance is of interest. The conservation of momentum
in the dispersed phase in a fluidized bed can thus be expressed as

ρ1 (φ∂/∂t+ 〈φw〉 ·∇) w = ∇P + n〈f〉 + φρ1g, (1)

with ρ1 the particle phase density, φ the solid fraction, w the particle velocity,
P the tensor of the particulate stresses and f the interphase interaction force per
particle [3]. The number concentration of particles are represented by n and g is
gravitational acceleration. The averaged values in equation (1), namely the total
volume flux, 〈φw〉, and the random forces experienced by the particles, 〈f〉, can be
approximated by φw and f respectfully, given that the fluctuations of these quan-
tities are relatively small [3]. For simplicity of the model these random forces
and the total volume flux was assumed as non-fluctuating quantities. Another sim-
plification proposed by Buyevich [3] is to neglect the quasi-viscous stresses. As a
result the gradient of particle stresses can be written as −∇p1, where p1 represents
the pressure in the dispersed phase. This approximation resembles the ideal-fluid
approximation given by Euler [3]. The total conservation of momentum can thus
be expressed as

ρ1 (φ∂/∂t+ φw · ∇) w = −∇p1 + nf + φρ1g. (2)

The random forces experienced by the particles consists of three entities namely
the drag force, buoyancy and inertial effects which may originate from several
different origins.

The drag force per particle can generally be expressed as

fd = m [F1(φ) + F2(φ)u] u, (3)

with u = v − w and where v is the interstitial velocity. Thus u is the fluid slip
velocity [3]. In equation (3) m represents the particle mass. Several correlations
exist for the prediction of F1 and F2 as a function of the solid fraction, φ, and other
physical parameters. Any adequate drag model can be used and in the present study
the model suggested in the work by Buyevich et al. [2] will be used. The functional
value of F1 will be more significant in the Darcy regime while F2 will be more
dominant in the Forchheimer regime. In the transition from one regime to the other
both terms in the drag correlation will be of importance. For the sake of simplicity
low particle Reynolds number flow was assumed in the present model. Thus only
the Darcy regime will be of importance and thus F2 will be assumed negligible.
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According to Buyevich this correlation for F1 can be expressed in terms of a
self-consistent model for finally dispersed concentrated suspensions and is given
by

F1 =
9
2
ρ0μ

ρ1d2
p

1
(1 − φ)n

, (4)

where μ is the fluid viscosity, dp is the effective particle diameter and ρ0 is the gas
density. For this application a value of 5

2 is assumed for the value of n in equation
(4) which corresponds to a value of 4.5 for the exponent in the Richardson and
Zaki equation [2].

The contribution of buoyancy to the total force experienced by a particle can be
expressed as

fb = −4π
3
d3

pρ (φ) g, (5)

where ρ(φ) = (1 − φ)ρ0 + φρ1 and is representative of the mean density of the
mixture.

The last force to be considered is fluid inertia. This force will be ignored in the
total interphase interaction force and is an acceptable assumption when working
with gas as the ambient fluid [3]. Moreover this force will be much less significant
compared to the influence of the drag and buoyancy forces.

Thus the total random interphase interaction force per unit volume of the mix-
ture without fluctuations can be expressed as

nf = n(fd + fb) = φρ1 [F1(φ) + F2(φ)u] u − φρ(φ)g, (6)

with n representing the number of identical spherical particles per unit volume of
the mixture [3].

1.2 First approximations and closure

Following the procedure outlined in the work by Buyevich et al. [2] the Davidson
and Harrison model [1] will be used as a first approximation for the particle veloc-
ity, w, as well as for the relative interstitial gas velocity, u. According to a simple
filtration model for a homogeneous porous body containing a spherical void in two
dimensions it follows that

u = u0(1 +
2R3

r3
)cosθ−→r − u0(1 +

R3

r3
)sinθ−→θ , (7)

whereR is the radius of a sphere with the same volume as the bubble at a particular
height in the fluidized bed. Equation (7) is written in spherical coordinates where
the radial and angular direction is defined in Figure 1. In the unperturbed dense
phase the interstitial velocity will be given by

u0 = (1 − φ0)n+1ut, (8)
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Figure 1: Schematic illustration of the proposed model alongside an image of a
real fluidized bubble.

where ut is the terminal fall velocity of a single particle in a stagnant gas and can
be expressed as

ρ1

ρ0

2d2
p

9μ
g. (9)

This particular model will be assumed to be adequate in the present study but
other correlations might produce better results. Further work on this particular
topic is planed in future work. The particle velocity, w, is given by the ideal flow
model around a sphere and is expressed as

w = Ub

{(
R3

r3
− 1
)
cosθ−→r +

(
sinθ +

R3

2r3
sinθ

)−→
θ

}
, (10)

in two dimensions with Ub = 2/3
√
gR from the Davidson and Harrison model

[1].
The only term in equation (2) that still needs closure is the particulate pressure

term. Different approximations also exist for the particulate pressure. In work done
by Buyevich [4] models are suggested for the closure of the particular pressure. In
the present study the particulate pressure will be assumed to be given by

p1 = G(φ)(φ/υ)T (11)

as described by Buyevich [3]. In equation (11) φ/υ represents the number concen-
tration of particles with υ the volume of a sphere. The functionG(φ) describes the
increase of the pressure in a dense gas consisting of hard spheres as compared to
that of a dilute gas [2]. This function is based on a statistical mechanical model of
Carnahan and Starlling [2]. Thus it follows that

G(φ) =
1 + φ+ φ2 − φ3

(1 − φ)3
. (12)

In equation (11) the ”temperature” of the pseudo-gas is represented by T . Again
different models may be used to model this analogy to a molecular system and in
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the present study it will be assumed to be given by

(φ/υ)T = 6.83 × 10−3φM2〈φ2〉ρ1u
2, (13)

with

M =
n+ 1
1 − φ

+
g

F1(φ)u
; 〈φ2〉 = φ2

(
1 + 2φ

4 − φ

(1 − φ)4

)−1

. (14)

In this model for the particular pressure, pulsation energy transfer and work done
in expanding the particle pseudo-gas is ignored. Gradients in time and space of
average variables are also ignored [2]. From literature it is clear that this particular
model is not the best model for predicting the particulate pressure but it will suffice
for now as a good starting point for expanding the existing model described by
Buyevich et al. [2].

2 The Buyevich model

In the original work done by Buyevich et al. [2] only the voidage distribution in
one dimension was described. Thus only the voidage directly in front of and at the
back of the bubble could be predicted. The present study aimed to use the same
basic approach to create a more general model that would be capable of predicting
the voidage all around the bubble, in other words, for all values of r and θ (refer
to Figure 1). As a starting point of the extended model only two dimensions will
be discussed here. The two dimensional solution was found by solving equation
(2) along several different radial lines from the center of the bubble. As an initial
control the results were tested with the results published by Buyevich et al. for the
voidage along the vertical axis of the bubble [2]. This will be the case with θ = 0.
In Figure 2 these results are shown for the voidage distribution in front of and at

Figure 2: The prediction of the Buyevich bubble model with a free bed solid frac-
tion, φ0, of 0.5 and a bubble radius, R, equal to one. The prediction is
given in front of- and at the back of the bubble.
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the back of the bubble. In Figure 2 the ξ represents the dimensionless distance and
is defined as ξ = r/R, with R as the bubble radius.

The radius of the bubble will be taken as a sphere with approximately the same
volume as that of the real bubble. In practice it is not always trivial to determine
the radius of this equivalent sphere but the concept will be used in the present
study. Figure 2 is just a control to check that the new two dimensional equations
simplify back to the results obtained by Buyevich et al. [2]. Exactly the same result
is retrieved with a solid fraction equal to 0.5 and a bubble radius equal to one.
Some differences were observed in the prediction at the rear of the bubble. The
results published by Buyevich did not include the particulate pressure term in the
total conservation of momentum equation. In some cases it is acceptable to assume
that this term is negligible but it is clear that this term has a significant effect on
the prediction of the model. In front of the bubble the results of the model seems
fairly physical and is a monotonously increasing function of the solid fraction. The
only effect of neglecting the particulate pressure term here would be a higher solid
fraction at the bubble boundary. At the back of the bubble the particulate terms
causes a very high solid fraction at the bubble interface. Whether this is physical
or not is not clear as a solid fraction of 0.7 seems very high if the free bed solid
fraction is a mere 0.5. Further research on the physicality of this phenomena is
needed.

3 Simulation correlations with the two dimensional model

In an attempt to quantify the results obtained with the model around the bubble,
CFD simulations were used to produce data. The simulation data should give some
indication of the validity of the model in question. The commercial code Flu-
ent Ansys 12.1 was used to perform the simulations. The Eularian approach was
employed and the Syamlal et al. drag model was used to simulate the drag [5]. A
uniform particle size equal to 483μm was assumed and the material was chosen
as glass. This set-up created a fluidized bed with a free bed solid fraction, φ0, of
0.63. The fluidization medium was modeled as air. All of the simulations carried
out was in a two dimensional rectangular column with a diameter of 23cm.

In Figure 3(a) a bubble is shown that was retrieved using simulations. To pro-
duce a single bubble the bed was modeled to be at minimum fluidization conditions
and then an extra supply of gas was fed into the bed via a jet that was located in
the middle of the bed.

The data was extracted as several points along several radial lines drawn from
the estimated center of the bubble. The radial lines that were investigated are given
in Figure 3(b) and the particular point used are illustrated in Figure 3(c). At each
point the solid fraction was extracted. The data from the extracted points were
compared with the model along each radial line in term of the dimensionless dis-
tance, ξ. The results are given in Figure 4. The radial lines that were investigated
are located at θ = 0, π/6, π/3 and π/2 respectively (refer to Figure 3(b)). The
equivalent spherical bubble radius was taken as 7cm. This is an empirical estima-
tion. A definition for the bubble boundary should also be defined.
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Figure 3: (a) A bubble created in a fluidized bed at minimum fluidization condi-
tions, (b) radial lines investigated to quantify the accuracy of the model
and (c) the point at which the void fraction data were extracted.

From Figure 4(a)–(b) it is clear to see that the correlation without the particulate
pressure term provides a much more accurate result. This may be a misleading
result as the value of ξ is strongly connected to what is defined as the bubble
boundary. If the equivalent spherical bubble’s radius was taken as less that 7cm
the correlation with the particulate term might have been a better fit. Simply from
this result it is clear that further research is needed in clearly defining the bubble
boundary.

There were a few unexpected and interesting results from the simulations. First
of all the solid fraction inside of the bubble was much higher than expected. In most
models commonly used, a simple two phase model is assumed. In other words,
there is only a uniform dense phase outside of the bubble and the gas phase inside
of the bubble. All gas in excess of the minimum fluidization velocity is assumed
to pass through the bed as bubbles [6]. This assumption seems to be very crude in
light of the simulations. These phenomena also make it more difficult to define the
bubble boundary. Even at what was assumed to be the center point of the bubble
a solid fraction of 0.12 was observed. From Figure 4 it is clear to see that the first
two data points on each radial line had a some what different gradient than the
other data points. This change in gradient might be an indication of the bubble
boundary, in which case, the new two dimensional model does relatively well in
prediction the boundary. Contrary to the previous published results it seems that
the bubble boundary cannot always be assumed to start at a solid fraction of zero
[2]. As the angle, θ, was tending toward π/2 the model correlation became worse
(refer to Figure 4(c) and (d)). Actually the model predictions depicted in Figure
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Figure 4: Solid fraction distribution along the radial lines (a) θ = 0, (b) θ = π/6,
(c) θ = π/3 and (d) θ = π/2.

4(d) were calculated using the value π/2.1 as the model produced a solid fraction
distribution equal to zero at π/2. This result is unphysical and is a consequence of
the trivial model used to predict the relative interstitial velocity, u. From equation
(7) it is clear to see that the velocity will be zero at π/2 in the radial direction
and when the velocity is modeled as zero it follows that the drag and consequently
the solid fraction will also be modeled as zero. This problem at π/2 raises doubts
about the physicality of the model’s perditions as θ � π/2. This phenomena might
also be the explanation for the relatively bad predictions as θ � π/2 (refer to
Figure 4(c)).

In Figure 5(a) and (b) the same result are show as in Figure 4 but on a bigger
scale.

In Figure 5 is a section of higher solid fraction just adjacent to the bubble bound-
ary. Further research on the physicality of this result is in progress. If it can be
proven that this region of higher solid fraction does indeed exist, it might help
the scientific community understand bubble interaction and coalescence in a more
clear way.
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Figure 5: (a) The solid fraction distribution along the radial line at θ = π/3, (b)
the solid fraction distributions along several radial lines and (c) gives the
solid fraction distribution in the rear quadrant of the bubble.

In Figure 5(c) the model predictions for θ = 2π/3, 5π/6 and π are given. In
this quadrant behind the bubble the opposite effect is observed. Adjacent to the
hypothetical bubble boundary a band of lower solid fractions exists. This effect is
again more pronounced for values of θ close to π/2. Whether this is just an artifact
or a real wake effect is not yet clear as no data was acquired in this region.

4 Conclusion

Bubbles in fluidized beds are one of the major phenomena through which mixing
takes place. Better understanding of physical phenomena in and around bubbles
in a fluidized bed is of paramount importance. Knowledge in this regard can help
engineers and scientists to design and develop more effective fluidized bed reac-
tors.

In the present study a model describing the voidage distribution in front and
behind a bubble in a fluidized bed was reexamined and extended. The model
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suggested is not complete or satisfactory. This work is only the initialization of
a research project to model the flow behavior in and around a bubble in a fluidized
bed. This model, originally suggested by Buyevich et al. [2], might be developed
into a very useful and convenient predictive tool.

Time the model gives very good results in the area close to the front of the
bubble. This was established by using data that was acquired using CFD simula-
tions. Suspected limitations of the models used to predict the relative interstitial
velocities, equation (7), might of been the cause of the inaccuracy of the model at
θ = π/2. Never the less, these problems have the possibility of being addressed in
the future and thus render a very accurate and useful model for predicting the solid
fraction distribution all around a bubble in a fluidized bed.
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