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Abstract

When a semi-infinite body of homogeneous fluid initially at rest behind a vertical
retaining wall is suddenly released by the removal of the barrier, the resulting
flow over a horizontal or sloping bed is referred to as a dam-break flow. When
bed resistance is neglected the exact solution, in the case of a stable horizontal
bed, may be obtained on the basis of shallow-water theory via the method
of characteristics and the results are well known. Discrepancies between these
shallow-water based solutions and experiments have been partially accounted for
by the introduction of flow resistance in the form of basal friction. This added
friction significantly modifies the wave speed and flow profile near the head of
the wave so that the simple exact solutions no longer apply. Various asymptotic
or numerical approaches must be implemented to solve these frictionally modified
depth-averaged shallow-water equations. When the bed is no longer stable so that
solid particles may be exchanged between the bed and the fluid, the dynamics of
the flow become highly complex as the buoyancy forces vary in space and time
according to the competing rates of erosion and deposition. It is our intention
here to study dam-break flows over erodible sloping beds as agents of sediment
transport, taking into account basal friction as well as the effects of particle
concentrations on flow dynamics including both erosion and deposition. We shall
consider shallow flows over initially dry beds and investigate the effects of changes
in the depositional and erosional models employed, in the nature of the drag acting
on the flow, and in the slope of the bed. These models include effects hitherto
neglected in previous studies and offer insights into the transport of sediment in
the worst case scenario of the complete and instantaneous collapse of a dam.
Keywords: gravity current, dam-break flow, sediment transport, dilute sediment.
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1 Introduction

Dam-break flows, which are represented by the sudden release of fluid contained
in a semi-infinite reservoir behind a vertical barrier, are of both practical and
fundamental importance in fluid mechanics, engineering, and geomorphology.
They have played a crucial role in underpinning simple models for a number
of natural and catastrophic events, such as break-out floods from the failure of
end moraine dams and various sheet flow events, as well as the formative stages
of lahars or debris flows [1-3]. Although in practice the release of water upon
collapse of the retaining barrier will often be more gradual than that in the idealised
mathematical models, one can view these models as providing the worst case
scenario for these events [3,4].

The earliest work on dam-break flows considered single phase, low aspect ratio,
frictionless flows in rectangular geometry taking the shallow-water equations as
the governing model equations. With the bed below the dam assumed horizontal
and dry, the solution for the flow is a centred simple wave that was first developed
by Ritter [5]. If the initial depth of water behind the vertical dam is &, the front of
the flow advances as a wave over the dry bed with constant speed 2+/ghg, while
the reduction of depth spreads back from the initial position of the dam with speed
+/gho, where g is the acceleration due to gravity. In the disturbed region between
the two extremes of depth, the velocity u and the depth of the flow & are given by

2(x+ h) d 1)
u=-|(- , an
3\7 8gho

Vet =5 (2t - 7). @

where x measures distance downstream of the original position of the dam and
t measures the time elapsed since its collapse. Although these solutions do
provide a reasonably good match to the experimental observations when the
transients associated with the initial release have died down there are still important
properties of the flow that are not captured by the classical shallow-water model
used in the construction of the solutions displayed in (1) and (2). It has been
observed in particular [3, 6] that for the dam-break flow experiments the water
near the tip piles up and the front speed is appreciably less than that predicted by
the simple theory.

In order to account for this blunting of the tip and the slowing down of the
front several authors [4, 7, 8] have postulated that near the tip, where the depth
of flow drops to zero, frictional resistance and the resulting turbulence dominate
the flow. To account for this basal friction a Chézy resistance term is added to
the momentum equation [4, 8]. Various asymptotic procedures were employed
[4,7, 8] to determine the influence of this resistance and it was found that its
inclusion brought theory and experiment into closer accord. Since we are interested
in developing and exploiting models for sediment transport that employ dam-
break flows on down-sloping topography as paradigms for certain geological and
engineering processes we shall extend the model beyond what is discussed in this
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paragraph while appreciating the significant gains achieved through the addition
of the resistance term. In fact, basal friction with realistic parameterisations for
geological applications appears to have a much greater influence on flow dynamics
than does the presence of particles in suspension [9].

Recent studies [1, 2] have employed dam-break flows as agents of sediment
transport. In [2] the authors explore dam-break flows over beds that consist of
fine sediment that can be entrained into the water column and transported in
suspension. The sediment transport was passive in that the suspended particles did
not influence the flow dynamics which could then be totally specified employing
the simple exact solution of the shallow-water equations for both a dry bed [5] and
a bed with ‘tail water’. Recent studies by the current authors [9, 10] have shown
that under the assumption of dilute suspensions employed in [2] the suspended
particles will play a relatively minor role in modifying the flow dynamics so that
passivity of sediment transport does not produce large errors. The omissions of
basal friction and bed topography however, as was the case in [2], were shown to
have a more profound negative influence on the accuracy of the results [10].

In the present work we shall employ dam-break flows over erodible beds as
agents of sediment transport. The inclusion of a velocity dependent basal friction
as well as bottom topography and non-passive particle transport adds several
important mechanisms that were absent from previous studies. We shall assume
that our flows are shallow so that the pressure remains hydrostatic throughout the
flow regime [2, 8—13]. We shall also assume that the particle concentration in the
flow remains sufficiently low so that we may treat the particles as being isolated
and employ a Boussinesq approximation whereby the particles appear in the
momentum equations only in the buoyancy terms. These assumptions put definite
constraints on the range of particle volume fractions ¢ (x, ¢) in our well-mixed
suspensions. When erosion exceeds deposition so that particle concentrations are
increasing we shall assume that our model calculations are valid up until ¢ ~ 0.05
[9, 10]. Although the bottom boundary shear stress could be calculated from the
full governing equations we shall adopt the common and much simpler approach
of introducing a Chézy drag coefficient Cp which when viscous effects are small
(large Reynolds number flows) gives the boundary shear stress as 7, = Cp pfu2,
where py is the density of the fluid and u a depth averaged horizontal velocity
[4,8—-10]. The Chézy drag coefficient is dimensionless and usually falls in the range
0.01-0.001 for most environmental flows [8]. With all of our additions to the model
of Pritchard and Hogg [2] (basal drag, bottom topography, and particle modified
flow dynamics) the simple shallow-water based solutions [5] will no longer apply
and the approach adopted in [2] is not available so that an alternative approach will
have to be adopted.

2 Model development

We consider the two-dimensional flow resulting from the sudden release of water
initially held at rest behind a plane vertical retaining wall of height Ao. The bed
below the dam which is initially located at x = 0, is gently varying and specified
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Figure 1: Schematic for the dam-break flow on a dry sloping and erodible bed.

(w,1)

by the topography z = b(x,t). It is assumed that initially there is no water
below the dam and that the bed is comprised of fine or cohesive material which,
once a threshold shear stress is exceeded, is entrained into the water column
and transported in suspension to possibly be deposited downstream. With our
assumption of dilute suspensions the erosion or deposition depth is small relative
to the depth of the current so that the position of the bottom boundary may be kept
fixed in most of our calculations. Although in the early stages of such dam-break
flows the stream-wise and vertical scales of the motion will be comparable, there
soon comes a time when stream-wise scales dominate the vertical ones and the
flow may be considered to be a shallow flow with negligible vertical accelerations
and a hydrostatic pressure distribution can be adopted [2, 8].

We shall assume that once particles have been suspended into the water column
they are always vertically well-mixed by the turbulence of the flow [2,11,12,14] so
that the volume fraction of particles in suspension ¢ is a function of the horizontal
coordinate x and the time ¢ elapsed since collapse of the dam. We shall always
assume that the water initially behind the dam is particle free. The bulk density p
of the suspension is then given by

p(P) = pp¢+ (1 —@)py, 3)

where p, (> py) is the particle density. The setting under which the model is
developed is summarised by the schematic presented in Figure 1.

The depth-averaged continuity and momentum equations for the system under
the Boussinesq approximation (¢ < 1) and the hydrostatic assumption [10] are

O ¢ D huy=0, and @)
JR— JR— — n
or Tax = w o8
5 5 1 h b
=y + — (B + = Epn? ) = LD, 5)
at ax 2pf Pf ax

where S is the Boussinesq coefficient (shape factor) [8]. The magnitude of g > 1
corresponds to the amount of shear present in the horizontal velocity field and may
depend on such factors as the Reynolds number or the boundary roughness [8]. The
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particle mass conservation and bed evolution equations [9, 10, 12] are

9 9 ab
Py (ppodh) + x (op®hu) = ge —qq. and Pp s = ~4e +4a. (6)

where ¢, is the mass erosion flux and g, is the mass deposition flux.
Observations have shown that g, and g4 are functions of both the fluid velocity
u and the volume fraction of particles in suspension ¢ [15]. We adopt the usual
expression for mass deposition rate, that is, g4 = pp$vs, where v; is the Stokes
settling velocity [2,9-14]. With no particles in suspension behind the dam we need
only consider deposition when u > u., where u. is some critical velocity below
which particles are not entrained into the fluid column. We adopt the expression

u’ )”
1) > u,
et = [t or ul = e )
0 for |u| < u,

for the erosion rate ¢., where v, is a sediment entrainment rate. This model is
used to describe the erosion of sediment from a cohesive bed or from a bed of fine
cohesionless material where some critical shear stress must be exceeded in order
to entrain particles from the bed into the water column [2,9, 10, 15-17].

We make all equations non-dimensional using the non-dimensionalisation and
scaling scheme presented in [10]. Of particular importance is the typical volume
fraction scale ¢ and velocity scale U. The velocity scale U is the familiar
A/gho wherein g is a ‘modified gravity’ which is given by (y¢o + 1)g where
y = (pp=rr)/p;. Rendering all equations non-dimensional gives

Yt Ly =0 ®)
ot 0x =5

0 9 2, 1. _ - 2
5(hu)+$|:ﬂhu +5h (1—r+¢r)}_ h(1+¢T)b, — Cpu”, (9)

%((ﬁh) + %(fl’hu) =qe—qd, (10)
ab
E=¢O(Qd_%:)a (1D
I/tz "
ga=usp. and g =1" <ﬁ B 1) forlul=tte )
0 for |u| < u,

where we have introduced the non-dimensional parameter I' = 1 — 1/(y ¢ + 1).

3 Analysis of the model

In this section we highlight various aspects of dam-break flows over erodible beds
based upon our model equations. The parameter values used in the simulations are
typical for flows of a geological scale with 4p = 20m [11].
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Figure 2: Solutions of (a) height and (b) velocity of the particle free modified dam-
break flow over a flat bottom with basal drag at t = 300. Solid lines show
numerical solutions with 8 = 1.0, 1.1, and 1.2 (from left to right, at the
front). Dashed line shows the Ritter solution. Parameter value used is
Cp = 0.001.

We begin by presenting an exploration of the effects of those mechanisms
(velocity shear, bed slope, and drag) that do not necessarily involve suspended
particles. To do so we examine solutions of the initial value problem corresponding
to the dam-break flow for the non-dimensional pair of coupled equations (8) and
(9) with I' = 0. Subsequently, we present an overview of the effects of suspended
particles by allowing the flows to entrain particles through bed erosion but fixing
the bed so that b(x,?) is in fact independent of . A more detailed study of
these scenarios is presented in [10]. Finally, we present a brief note regarding the
evolution of the bed topography when the bed is eroded according to (11).

3.1 Modified dam-break flows with drag

In this subsection we present solutions for modified dam-break flows with basal
drag in the absence of bed topography or particles. That is, following the approach
employed in [2,6-9, 18] we retain the basal drag term in order to bring our model
calculations into closer accord with the experimental results of [7] wherein dam-
break flows over a horizontal bed were examined.

In Figure 2 we have plotted both the height and velocity profiles, respectively,
for both the classic solution [5] and the numerical solution including basal drag.
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We note immediately that the presence of drag has significantly altered the shape
of the depth profile in the immediate vicinity of the leading edge as well as the
velocity structure of the flow in this region. We also note that, in agreement with the
experimental results [7] and the theoretical approach adopted in [4], the velocity is
nearly uniform in the blunt snout. That is, in the deformed tip basal drag retards the
flow so that the velocity profile is approximately horizontal there. The assumption
that the velocity in the tip depends only on time was crucial to the theoretical
development in [4] and appears to be confirmed by our numerical work.

Furthermore, we note that the effect of vertical shear (8 > 1) in the horizontal
velocity profile is most dramatic in the immediate vicinity of the leading edge
where the depth, and hence momentum, of the flow is small allowing the effect of
vertical shear in the horizontal velocity to be accentuated.

3.2 Modified dam-break flows with drag over a linear slope

In this subsection we will examine modified dam-break flows over sloping beds
in order to isolate the effects of the interplay between the bottom slope and basal
drag. We shall take the bottom topography to be specified by

b(x,t) = —sxO(x) (13)

where s is a small non-dimensional parameter and ® is the Heaviside step
function. Employing this simple linear form for the bottom topography allows us
to appeal to our intuition while interpreting both theoretical and numerical results.
Furthermore, the stream-wise gradient of a linear slope is constant, affording us
the opportunity to perform an asymptotic expansion over the bed slope s, which
was presented in [10].

In Figure 3 we have plotted the numerical solutions for both the height and
velocity profiles of a particle free dam-break flow over a sloping bottom with drag
for B = 1. We note that both the height and velocity profiles are nearly horizontal
in the bulk of the flow over the linearly sloping bed. In the presence of a sloping
bottom the blunt snout in the height profile has become more abrupt and falls
steeply to zero at the front. As demonstrated in previous sections, the effect of drag
is to retard the front and create a blunt snout, while the effect of a sloping bottom
is to draw out the fluid, reducing its height in the bulk of the flow over the sloping
bed, and slightly increasing its height directly behind the front. Furthermore, in
contrast to the drag-free case, the presence of a sloping bottom has a significant
effect on the front position of the flow. As one may expect, the front position is
greater for flows over steeper beds.

3.3 Modified dam-break flows with drag and sediment

In this subsection we will examine modified dam-break flows as agents of sediment
transport over flat erodible beds while allowing the particle volume fraction to
change through the mechanisms of particle advection, deposition, and entrainment
through bed erosion. In our previous work [9] we demonstrated the role played
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Figure 3: Solutions of (a) height and (b) horizontal velocity for particle free dam-
break flows over linear slopes with drag. Solid lines show numerical
solutions at ¢+ = 100 with slope s = 0,0.001, and 0.01 (from left to
right, at the front). Dashed lines show the Ritter solutions. Parameter
values used are Cp = 0.01 and g = 1.

by the critical bed velocity u. in the long term competition between erosion and
deposition and displayed the strong effect of basal drag on the ultimate outcome of
this competition. Furthermore, we observed that the inclusion of particles did not
have a significant effect on the height or velocity profiles of the flows. Generally,
flows with particles were slightly faster compared to analogous particle free flows,
but only by a few percent at most.

The maximum rate of sediment entrainment occurred at the front and was nearly
uniform within the snout. Peaks in the volume fraction of sediment profiles were
observed directly behind the front where the height of the fluid decreased sharply
to zero. These peaks in the volume fraction of sediment profiles where highest for
short post-release times since the velocity was also highest for short post-release
times, and decreased with time.

In Figure 4 we have plotted a typical numerical solution of the full model
equations with drag, particle deposition, and bed erosion over a flat bed for a
parameter configuration in which the drag coefficient Cp and critical bed velocity
u. were small enough so that particles were entrained by the snout for the duration
of the flow.

The interplay between basal drag and the critical bed velocity was further
demonstrated in our recent work [9] by examining the particle flux at a fixed
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Figure 4: Solutions (volume fraction) of the dam-break flow over a flat bed with
basal drag, particle deposition, and particle entrainment at various times
t = 60,120, ...,540,600. Parameter values used are Cp = 0.001,
¢o = 0.01, y = 2.5, uy = 0.005, u, = 0.0015,n = 1.2, u, = 0.5,
and g = 1.

station. Flows with high basal drag did not continue to erode the bed and entrain
particles once the front had passed a given station. Flows with a critical bed
velocity above 2/3 were also dominated by deposition since the long term Ritter
velocity is less than 2/3 regardless of the presence of basal drag. Flows with
low drag and a critical bed velocity below 2/3 continued to erode the bed and
advect entrained particles downstream. As time progressed, the horizontal velocity
at the station approached its Ritter solution and the particle flux due to erosion
approached a steady value while the particle flux due to deposition increased with
increasing volume fraction until an equilibrium between erosion and deposition
was reached.

3.4 Modified dam-break flows with drag and sediment over a linear slope

In this subsection we will examine modified dam-break flows as agents of sediment
transport over sloping erodible beds.

In our previous work [10] we observed that, as in the previous case with flat
beds, the inclusion of particles did not have a significant effect on the height or
velocity profiles of the flows. Particles entrained into the flow maintained their
relative position within the flow which resulted in a nearly linear volume fraction
profile that increased in the downstream direction. Furthermore, the maximum
attained by the volume fraction continued to increase for all post-release times,
in contrast to the flat bed case. The peak in the volume fraction occurred directly
behind the front, and was primarily due to advection coupled with the nearly
horizontal velocity profile over the sloping bed.

In Figure 5 we have plotted the horizontal velocity # and volume fraction of
sediment ¢ for a typical numerical solution to the full model equations with basal
drag, particle deposition, bed erosion, and bed slope. These plots elucidate the
relationship between the velocity and volume fraction of sediment entrained by
the flow.
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Figure 5: Solutions (a) horizontal velocity and (b) volume fraction of the dam-
break flow with basal drag, particle deposition, and bed erosion at various
times t = 20, 40, ..., 80, 100. Parameter values used are Cp = 0.001,
¢o = 0.01, y = 2.5, uq = 0.005, u, = 0.0015,n = 1.2, u, = 0.5,
B =1,and s = 0.001.

The linear nature of the volume fraction profile shown in Figure 5 is in contrast
to the flat case (see Figure 4) in which the volume fraction was highest in the snout
and decayed in a non-linear fashion in the upstream direction [9]. In the sloping
case, the peak in the volume fraction is primarily due to advection coupled with
the nearly horizontal velocity profile, and the peak increases for all post-release
times.

3.5 Modified dam-break flows with drag and sediment over a variable bed

In this subsection we will examine modified dam-break flows as agents of sediment
transport over initially flat erodible beds. We allow the bed topography to change
with time through the mechanism of erosion according to (11).

In Figure 6 we have plotted the bed topography b(x, t) and horizontal velocity
u of the numerical solution to the full model equations with basal drag, particle
deposition, and bed erosion. These plots show the scour pit resulting from bed
erosion. We note that the pit is deepest slightly downstream from the original
position of the dam. There is peak in the horizontal velocity directly above the
scour pit since the fluid gains momentum as it falls into the pit.
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Figure 6: Solutions of (a) bed height and (b) horizontal velocity for particle laden
dam-break flows over variable beds with drag at time ¢+ = 120. Solid
lines show numerical solutions with Cp = 0.001, ¢g = 0.01, y = 2.5,
ug = 0.005, u, = 0.0015,n = 1.2, u, = 0.5, 8 = 1, and s = 0.001.
Dashed lines show the Ritter solutions.

Further exploration of the complex interplay between the fluid, sediment, and
bed dynamics will be carried out in subsequent research.

4 Discussion

We have developed a model to describe the transport of dilute sediment under
dam-break flows over sloping beds with basal drag and presented numeri-
cal solutions to this model in order to investigate the influence of various
model parameters. The model developed is an extension to previous models,
includes a velocity dependent basal drag force, incorporates the effects of
a spatially dependent bed topography, and allows the variable concentration
of suspended particles, through the mechanisms of deposition and erosion,
to influence the flow dynamics. The model is unique from existing models
which do not couple the flow and sediment dynamics and do not include
basal drag [2] or bed topography [9]. The numerical results show that this
coupling is especially important for the sediment dynamics and should not
be ignored when the understanding of sediment processes is vital to a given
study.
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