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Abstract

In this paper two variants of a VOF-based approach for the numerical simulation of
the molar mass transport of a diluted species in two-phase flows with deformable
interfaces are introduced and compared. The variants differ in the manner of the
computation of the mass transfer flux across the interface. The method assumes
local thermodynamical equilibrium at the interface and enables the simulation of
conjugated mass transfer problems across deformable interfaces, where the mass
transport resistance lies in both phases. The considered model also allows for arbi-
trary distribution coefficients. First numerical simulations show the potential and
the present limits of this method.
Keywords: Direct Numerical Simulation, two-phase flow, Volume of Fluid, conju-
gate mass transfer, two scalar approach.

1 Introduction

In Process Engineering, mass transfer operations based on dispersed two-phase
flows are frequently applied. Typical examples are gas purification by bubbling of
a gas through a liquid, oxygenation of aqueous systems in biological processes,
and solvent extraction as a thermal separation process. Besides the departure from
the phase equilibrium, the mass transfer depends mainly on the characteristics of
the dispersed two-phase flow, i.e. on the particle size and shape, slip velocities,
internal circulation, swarm behaviour etc., and on the species diffusivities. Besides
experimental studies, Direct Numerical Simulations of single fluid particles, which
become more and more feasible due to the ongoing increase in computational
power, can be very useful since they can provide local data which usually can-
not be accessed by experiments. Contrary to heat transfer, in mass transfer prob-
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lems the transported scalar - the molar concentration c, say- is not continuous at
the interface. To handle the interfacial jump discontinuity numerically is a chal-
lenging task. Volume of Fluid (VOF)-based simulations of mass transfer across
deforming interfaces have been reported in [1] and in [2, 3]. In the latter papers,
transfer of oxygen from air bubbles rising in water or aqueous solutions has been
simulated, taking into account the realistic jump discontinuity of the oxygen pro-
files at the interface. Darmana et al. [4] performed 3D simulations of mass transfer
at rising fluid particles for Sc = 1 using the Front Tracking method. There, the
transport resistance inside the fluid particle is neglected, i.e. a constant concentra-
tion value inside the bubble is assumed. Radl et al. [5] performed 2D simulations
of deformable bubbles and bubble swarms with mass transfer in non-Newtonian
liquids using a semi-Lagrangian advection scheme. To prevent stability problems,
a reduced density ratio between gas and liquid is used there. Recently, first papers
on numerical simulation of reactive mass transfer appeared. In [6, 7], the impact
of single bubble wake dynamics on the reaction-enhanced mass transfer and on
the yield and selectivity of the cyclohexane oxidation reaction is studied numeri-
cally for fixed shapes in 2D. In [8], reactive mass transfer at deformable interfaces
is examined using a 2D Front Tracking/Front Capturing hybrid method. In [9], a
Level Set based method is used to simulate mass transfer across the interface of
a moving deformable droplet. This method is extended to reactive mass transfer
in [10], where an instantaneous chemical reaction occurs inside a moving droplet
which leads to a quasi-stationary problem for the mass transfer. In [11], 2D sim-
ulations are performed using a Front-Tracking method to investigate the effect of
different Hatta and Schmidt numbers on the catalytic hydrogenation of nitroarenes
for single bubbles and bubble clusters.

The focus of the present work is on a VOF-based method having the potential to
be used for Direct Numerical Simulations (DNS) of mass transport in two-phase
flows with deformable interfaces, including droplets, bubbles, falling films etc.
For the computation of the mass transfer across the interface, two variants are
employed. In the numerical study presented here, single fluid particles rising in a
Newtonian fluid with mass transfer from the fluid particle to the surrounding liquid
are considered.

2 The governing equations

In the following, we consider a fluid-particle (domain Ωd(t)) which is immersed
in a liquid (domain Ωc(t)). The deformable interface between the two phases is
presented as a surface of zero thickness and is denoted by Σ(t). The transfer com-
ponent k has a constant initial concentration ck(t0) > 0 inside the fluid particle
and a zero concentration inside the surrounding liquid. Furthermore, the following
assumptions are imposed:

• dilute two-phase system,
• chemically inert non surface active transfer component,
• local thermodynamical equilibrium at the interface,
• no phase change,
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• isothermal conditions,
• incompressible bulk phases.

The present paper employs a continuum mechanical model in which the govern-
ing equations are based on the conservation of mass, momentum, and (molar) mass
of the transfer component. Inside the phases the transport of species k is governed
by the local balance equation

∂tck + ∇ · (uck + jk) = Rk in Ωc(t) ∪ Ωd(t). (1)

Here ck is the volume specific molar concentration of the dissolved species k,
jk is the area specific diffusive (molecular) flux density, and Rk is the overall
reaction rate accounting for all chemical reactions in which species k is involved.
In the following, chemical reactions are not more considered, i.e. Rk = 0. For
the diffusive flux density, a suitable constitutive equation is required. Here, only
diluted systems are considered. In this case the molecular transport inside the bulk
phases can be described by Fick’s law, i.e.

jk = −Dk ∇ck, (2)

with diffusion coefficient Dk. The concentration ck and with it the flux jk as well
as the velocity u are local and time dependent quantities. To solve the parabolic
partial differential equations (1) inside the bulk phases, initial and suitable bound-
ary conditions are required. The solutions inside the phases are not independent at
the interface and two jump conditions are required. The first one is a transmission
condition and comes from the interfacial balance. Since only non surface active
transfer components are considered, the normal component of the diffusive fluxes
are equal at the interface, i.e.

[jk] · nΣ = 0 (3)

with the jump notation

[φ] (xΣ) = lim
h→+0

(φ(xΣ + hnΣ) − φ(xΣ − hnΣ)) . (4)

For the second interfacial condition, local thermodynamical equilibrium is
assumed, i.e. the chemical potential µk of component k is continuous at the inter-
face:

[µk] = 0, (5)

with
µk(T, p) = µ0

k(T, p0) + RT ln ak. (6)

The first term in (6) is the chemical potential of component k in a pure system (con-
sisting only of component k) at temperature T and standard pressure p0, whereas
the second term, containing the activity ak of species k in a multicomponent fluid,
accounts for mixing effects. For liquid systems, the activity is proportional to the
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concentration and for gas mixtures it is proportional to the partial pressure. In case
of a diluted system, the thermodynamical equilibrium condition (5) reduces to

cd
k|Σ = cc

k|Σ /mk, (7)

with the distribution coefficient mk = mk(p, T ) > 0, where cd
k|Σ and cc

k|Σ are the
one-sided limits of the concentrations at the interface in the dispersed and contin-
uous bulk phase, respectively. Since we consider only isothermal flows with small
pressure gradients, the distribution coefficient mk is assumed to be constant. The
second condition (5) is only an approximation since the deviation from the local
thermodynamical equilibrium is the driving force of the mass transfer. However,
this deviation is very small. Therefore, the equilibrium assumption is commonly
accepted.

The underlying velocity field is governed by the two-phase Navier-Stokes equa-
tions expressing conservation of mass and momentum. Assuming continuity of the
velocity at the interface, a one-field formulation is possible in which the interfacial
momentum jump conditions act as source terms in the momentum equations. For
viscous (Newtonian) fluids of constant density and constant surface tension, the
governing equations read as

∇ · u = 0, (8)

and
ρ ∂tu + ρ (u · ∇)u = −∇p + η∆u + ρg + σκnΣδΣ, (9)

where the momentum jump conditions are incorporated via the interfacial Delta
distribution δΣ. In this interfacial source term, κ = −∇ ·nΣ denotes the curvature
(more precisely, the sum of the principal curvatures). In (9) the material properties
ρ and η refer to the phase dependent values which are given as

ρ = fρd + (1 − f)ρc (10)

and
η = fηd + (1 − f)ηc, (11)

where f is the phase indicator function of the phase domain Ωd(t).

3 Numerical method

For complex flow situations such as a freely moving fluid particle with a deform-
able interface, the mathematical model described in the previous section cannot
be solved analytically but has to be treated numerically. There are several require-
ments for an appropriate numerical method. One challenge is the capturing of the
interfacial concentration jump of the transfer component at the interface according
to (7). Since a Lagrangian fluid particle cannot cross the interface (Lagrangian the-
orem), the species transport across the interface is purely diffusive. Therefore, the
convective transport of the discontinuity shall not lead to an artificial mass transfer
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across the interface. Furthermore, the continuous-side concentration gradient nor-
mal to the interface may be very steep depending on the particle Reynolds number,
Re, and the Schmidt number, Sc, of the continuous phase. For practically relevant
Sc numbers around 500, say, the concentration boundary layer cannot be resolved
without specific computational techniques. The numerical scheme presented here
is based on the VOF method [12] using the one-field formulation of the Navier-
Stokes equations (9). In comparison with other free surface simulation methods,
the VOF method can handle massive deformations and even topology changes
as they can appear in case of large bubbles. Furthermore, the VOF method con-
serves the phase volume, which is an important issue if chemical reactions shall
be accounted for. The phase indicator f is obtained from its initial distribution by
solving the advection equation

∂tf + u · ∇f = 0. (12)

In the Finite Volume context, f corresponds to the volume fraction of phase Ωd

inside a computational cell V . The employed Finite Volume based VOF-solver,
Free Surface 3D (FS3D) developed by Rieber [13], applies a directional as well
as a kind of operating splitting. To avoid systematic errors and unsymmetries,
the sequence of processed directions in the splitting scheme is altered in each
time step. That is, the convective terms of all transport equations are computed
firstly. Than, the forces for the momentum equations are computed and impressed
before the diffusive transport terms are calculated. For the volumetric surface ten-
sion force the conservative continuum surface stress (CSS)-model of Lafaurie et
al. [14] is used. The numerical solution of the discrete version of (12) is based on
a geometrical based flux calculation. Application of the so called piecewise lin-
ear (or planar in case of 3D) interface calculation (PLIC) scheme for the outgoing
phase volume fluxes in interfacial cells prevents interface smearing.

3.1 Transport of molar species mass

For the computation of the transport of a transfer species k, the concentration is
represented by two separate scalar variables according to

φd
k(x, t) =

{
ck(x, t) for x ∈ Ωd(t)
0 for x ∈ Ωc(t)

(13)

and

φc
k(x, t) =

{
0 for x ∈ Ωd(t)
ck(x, t) for x ∈ Ωc(t).

(14)

This allows for capturing the different one-sided limits of the concentrations at the
interface. In the discrete Finite Volume scheme, these scalars are related to the cell
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volume V , i.e. in interface-containing cells the cell centered values are given as

φd
k(t) =

1
|V |

∫
V ∩Ωd(t)

ckdV (15)

and

φc
k(t) =

1
|V |

∫
V ∩Ωc(t)

ckdV. (16)

3.1.1 Convection

The new variables are similar to the VOF-variable f in that these quantities are
all nonnegative. The only difference is that φd

k and φc
k can take arbitrary positive

values whereas f is always less or equal to one. Therefore, the convective trans-
port of φd

k and φc
k is treated analogously to that of the convective f transport, using

the PLIC algorithm for the outgoing flow in interfacial cells to prevent an (artifi-
cial) convective mass transfer and a flux limiter scheme inside the bulk phases to
minimize numerical diffusion.

3.1.2 Mass transfer across the interface

After the computation of the convective transport of species mass (and also of the
other quantities like phase volume and momentum) mass transfer across the inter-
face is calculated. Within the two scalar approach, mass transfer is accounted for
by source terms. Inside a computational cell Vi containing a part of the interface,
the transferred volume specific molar mass is substracted from and added to the
corresponding values of φd

k,i and φc
k,i. In this notation, index i stands as a short

form for (i, j, k) which is the full index of a grid cell in a 3D Cartesian mesh. For
brevity the characters j and k are omitted. In the following, the calculation of one-
dimensional fluxes are explained only for the x-direction where index i+1 has the
meaning of (i + 1, j, k). For the calculation of mass transfer, where the two jump
conditions (3) and (7) have to be accounted for, we employ two different variants.

Variant I: Equilibration of interfacial cells

In the first variant, we assume that inside a computational cell Vi, containing
a part of the interface, the transfer component k is ideal mixed in the separate
phases. After the convective transport both variables φc

k,i and φd
k,i have certain

values which are assumed to be constant within the respective phases lying in
the considered interfacial cell. However, the ratio φd

k,i(1 − fi)/(φc
k,ifi) does not

corresponds to mk, in general. Therefore, the characteristic of this equilibrium
approach is the conservative redistribution of the (molar) species mass according
to

φd
k,i |Vi| + φc

k,i |Vi| = φd,eq
k,i |Vi| + φc,eq

k,i |Vi| , (17)
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where the values of the variables φd,eq
k,i and φc,eq

k,i fulfil the thermodynamical con-
dition (7). In this variant, the first transmission condition (3) is not explicitly
accounted for. But this condition expresses the local (molar) mass balance at the
interface which is inherently fulfilled by this approach.

Variant II: Computation of the one-sided concentration gradient

The second variant is based on the computation of the concentration gradient
adjacent to the interface at the continuous side. Within an interfacial cell Vi the
total (molar) mass flux of species k normal to and across the interface with inter-
facial area |AΣi | is given by

jΣi,k · nΣi |AΣi | = (jΣi,k,x nΣi,x + jΣi,k,y nΣi,y + jΣi,k,z nΣi,z) |AΣi | . (18)

Here, only directions are accounted for in which the neighbour cell is completely
filled with the continuous phase. To calculate the one-dimensional diffusive flux
density jΣi,k,x (where Σi denotes the interface in cell Vi, k the component index,
and x the direction) it is assumed that within the interfacial cell the dispersed phase
is well mixed. Therefore, the cell centered value of φd

k,i is taken as the concentra-
tion value cd

k|Σ ,i adjacent to the interface. Then, depending on whether cell Vi+1 or
cell Vi−1 lies completely in the continuous phase, the one-dimensional flux density
is computed as

jΣi,k,x = −Dc
k

φc
k,i+1 − φd

k,i/(fimk)
xi+1 − xi

(19)

or

jΣi,k,x = −Dc
k

φd
k,i/(fimk) − φc

k,i−1

xi − xi−1
, (20)

respectively. The local interfacial area in an interfacial cell Vi is calculated from
the cell centered value of the gradient of the VOF-variable f according to

|AΣ,i| = ‖∇f‖i |Vi| . (21)

After calculating the cell specific total molar mass flux normal to the interface (18),
the values for φd

k,i and φc
k,i are updated according to

φd
k,i = φd

k,i − qk,i and φc
k,i = φc

k,i + qk,i (22)

respectively, where the source term is given by

qk,i =
jΣi,k · nΣi |AΣi | ∆t

|Vi| . (23)
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Table 1: Physical parameters

phase density dynamical diffusion Schmidt number

viscosity coefficient

ρ in kg/m3 η in mPas D in m2/s Sc = ν/D

dispersed 1.2 18 · 10−3 5 · 10−6 3
continuous 1000 10 10−6 10

3.1.3 Diffusive transport inside the bulk phases

Finally, diffusive transport in the bulk phases is computed. Here, especially in com-
putational cells with a very small f value it might occur that too much species mass
leaves the cell during time interval ∆t. The directional splitting scheme allows for
a limitation of the diffusive fluxes which are calculated, using the forward differ-
encing scheme according to

Ṅk,i,i+1 = D
c/d
k

ck,i − ck,i+1

xi+1 − ci
|Ai,i+1| , (24)

where Ai,i+1 is the cell face which connects the cells Vi and Vi+1. This one-
dimensional flux is limited by the equilibrium criteria cn+1

i+1 ≥ cn+1
i if cn

i+1 ≥
cn
i and vice versa. Furthermore, diffusive fluxes across cell faces connecting two

interfacial cells are also accounted for.

4 Simulation results and discussion

To compare the two variants, 2D numerical simulations (i.e. with translational
symmetry) of an air bubble rising in a Newtonian liquid have been performed.
The area equivalent diameter of the bubble is 3 mm, the liquid has a dynamical
viscosity of 10 times higher than that of water and a density of 1000 kg/m3. To
keep the time step sufficiently high, a reduced surface tension of 36 mN/m has
been used. For the distribution coefficient mk a value of 0.03 is chosen. The physi-
cal parameters are given in Table 1. The computational domain of 1.2 cm×2.4 cm
is resolved by three different computational grids; cf. Table 2. Figure 1 shows the
increase of the molar mass of the transfer component within the continuous phase
with time. For all resolution cases the mass transfer calculated with the equilibrium
approach is higher than that calculated with the gradient approach. But the results
of both variants get closer together with higher resolution. This indicates insuffi-
cient resolution of the thin concentration boundary layer; recall that the latter has
a thickness proportional to 1/

√
Re Sc. Obviously, with the gradient approach the

mass transfer is underestimated. The reason for this may be an inaccurate approxi-
mation of the interfacial area. The total interfacial area of a fluid particle is given by
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Table 2: Used numerical grids

Case number of grid cells cell width in µm cells per diameter

A 256 x 512 46.9 64
B 512 x 1024 23.4 128
C 1024 x 2048 11.7 256

Figure 1: Molar mass of transfer species in continuous phase related to initial
molar mass in fluid particle versus time

∑
all cells ‖∇f‖i |Vi|. But not only interfacial cells have ‖∇f‖ greater than zero

but also the neighboring cells. Therefore, equation (21) yields a too low value for
the local interfacial area inside a computational cell. Otherwise, the equilibrium
approach inherently overestimates the mass transfer since the (local) thermody-
namical equilibrium is only valid adjacent to the interface. The larger the normal
distance from the interface the lower is the concentration. The assumption of ide-
ally mixed interface cells can be interpreted as an infinitely fast molecular trans-
port at the interface leading to a too large mass transfer. Therefore, the equilibrium
approach yields an upper bound for the mass transfer. However, from Figure 1 it
can be seen that grid independence is already reached. The different mass transfer
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rates are also noticeable in the concentration profiles. Figure 2 shows the concen-
tration distribution within the continuous phase when stationary hydrodynamical
conditions are reached, obtained with the two variants (left: equilibrium and right:
gradient variant) at the highest resolution (case C). In both cases, species is mainly

Figure 2: Concentration distribution of transfer component in the continuous phase
yielded at highest resolution (Case C): mass transfer calculated with
equilibrium variant (left) and with the gradient variant (right)

present in the wake of the fluid particle. However, with the equilibrium approach
the region of high concentrations at the stagnation points is more pronounced than
those obtained with the gradient approach.

5 Conclusions and outlook

A new VOF-based two scalar approach for simulating the transport of chemical
species within a two-phase flow is introduced. The method allows for the sim-
ulation of conjugate mass transfer problems across deformable interfaces with
an arbitrary distribution coefficient. The treatment of the convective transport is
analogous to that of the VOF-variable f , using a geometrical flux calculation.
This procedure avoids artificial mass transfer due to convection. First numerical
results in 2D at a moderate Schmidt number of 10 are performed. The results
show that the mass transfer rate obtained by equilibration of the interfacial cells
are always higher as those obtained by using the one-sided limit of the concentra-
tion gradient in the continuous phase. However, with finer resolution the results of
both variants get closer together. For the equilibrium variant, grid independency
is reached. However, the finest resolution presented here will not be sufficient for
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higher Schmidt numbers and, moreover, is not suitable for 3D simulations. The
mass transfer rate obtained with the gradient variant at the highest resolution is
still lower than the ”true” rate. The reason for this may lie in the underestima-
tion of the interfacial area. Therefore, further steps are the use of a more accurate
interfacial area calculation scheme, the development of a subgrid model for the
concentration profile at the interface, use of a moving grid technique to reduce the
computational domain as well as a local grid refinement around the bubble.
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