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Abstract

In the frame of Lagrangian stochastic dispersion models used to predict the
behaviour of small inertial particles moving in a turbulent flow, crossing-trajectory
effects are generally accounted for by modifying the integral time scales according
to the famous analysis of Csanady (J. Atmos. Sci., 20, pp. 201-208, 1963). Here,
an alternative theoretical analysis of the time correlation of the fluid velocity
fluctuations along a particle trajectory is presented. Analytical expressions of the
integral time scales of the fluid seen by the particles in isotropic turbulence are
first derived in the asymptotic limit where the mean relative velocity is much larger
than the particle velocity fluctuations, then a correction is proposed to extend their
applicability over the whole range of mean relative velocity. These expressions
do not depend on the presumed shape of the two-point fluid velocity correlations.
The predicted time scales in the transverse direction differ from some available
proposals in the literature, but are in agreement with other analyses based on an
assumed functional form of the turbulence spectrum, at least in the limit of large
mean relative velocity. Additionally, some comparisons with numerical predictions
obtained in a synthetic Gaussian turbulence show that the present theoretical
results are in good agreement with the computations in a large range of mean
relative velocity and particle inertia.
Keywords: gas-particle flow, particle dispersion, crossing-trajectory, turbulence.

1 Introduction

As is well known, the behaviour of small inertial particles moving in a turbulent
flow can be described by means of Lagrangian stochastic models that consist in
building a proper stochastic process to predict the instantaneous velocity of the
fluid seen by a discrete particle. The so-called crossing-trajectory effect is observed
when the fluid and particle mean velocities differ due to some external force
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field, leading to significant decorrelation of the fluid velocity fluctuations along
the discrete particle path. Due to continuity requirements, the decorrelation effect
is larger in the directions perpendicular to the mean relative velocity. Crossing-
trajectory effects are generally accounted for by modifying the integral time scales
according to the famous analysis of Csanady [1]. Alternate formulations to express
the non isotropic decrease of the correlation time scales were derived by Wang and
Stock [2], Mei et al [3] and Derevich [4].

Here, we present a theoretical analysis of the time correlation of the fluid
velocity fluctuations along a particle trajectory, under the assumption of isotropic
turbulence which was also made in the above cited papers. Expressions of the
integral time scales of the fluid seen are derived in the asymptotic limit where
the mean relative velocity is much larger than the particle velocity fluctuations.
A correction is then proposed to make these expressions valid in the whole
range of mean relative velocity, taking the inertia effect into consideration. The
results are compared with the various available expressions in [1-4] and with
numerical predictions achieved through particle trajectory computations in a
synthetic Gaussian turbulence as well.

2 Analysis

The autocovariance tensor of the fluid velocity fluctuations along the discrete
particle path (fluctuations of the fluid seen) is defined by

Q∗
ij(x, t; τ) = 〈u′∗

i (t)u′∗
j (t + τ)〉 (1)

where u∗(t) = uf (xp(t), t) is the instantaneous velocity of the fluid at the
particle location xp(t), the prime denoting the fluctuating part of the velocity, and
x = xp(t). Under the assumption of homogeneous stationary turbulence, where
there is no dependence on position or time, we will use the shortened notation
Q∗

ij(τ) = 〈u′∗
i (t)u′∗

j (t + τ)〉 ∀x, t.
As pointed out by Derevich [4, 5], Q∗

ij can be expressed in terms of the Eulerian
two-point two-time velocity covariance tensor of the fluid measured in a reference
frame moving with the mean fluid velocity,

Qij (r, τ) = 〈u′
i (x, t) u′

j (x + r, t + τ)〉 , (2)

and of the particle transition probability Ψ(r, τ), which is the probability density
function (PDF) of a particle having a displacement r during time τ . The
autocovariances of the fluid seen can be written as

Q∗
ij(τ) =

∫
Qij(r, τ)Ψ(r, τ) dr , (3)

where it is assumed that the particle displacement PDF is independent of the
instantaneous velocity fluctuation of the fluid phase (independence approximation
[6]), which means in particular that possible effects of preferential concentration
are not considered here.
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In what follows, we are mainly interested by the integral time scales of the fluid
seen by the particles in isotropic turbulence, under the effect of a constant mean
relative velocity V between the fluid and the particles due to some external force
field (equivalently, V is the mean particle velocity in a reference frame moving
with the mean fluid velocity). Provided one axis of the co-ordinate system is
aligned with this mean relative velocity, the study can be restricted to the diagonal
components of the integral time scale matrix, defined by (no summation over
Greek indices)

T ∗
αα = 〈u′2〉−1

∫ ∞

0

Q∗
αα(τ) dτ , (4)

where it is assumed that there is no bias between the velocity variance of the fluid
seen and the Eulerian one 〈u′2〉 (the subscript is omitted according to the assumed
isotropy of the fluid turbulence). Without loss of generality, we will set V = V e1.

2.1 Approximate expressions of the space-time correlations

In order to take advantage of eqn. (3), we have first to assess the space-
time correlations by means of some expressions which fulfill the asymptotic
requirements for r −→ 0 and τ −→ 0. To this purpose, we know that Csanady
[1] suggested that the lines of constant space-time covariance for longitudinal
separation r and time lag τ are ellipses obeying the equation

r2

L2
f

+
τ2

T 2
E

= constant , (5)

where Lf , TE are the longitudinal integral length scale and the Eulerian integral
time scale, respectively, assuming isotropic turbulence. In slight contrast with
Csanady’s formulation, here we use TE for sake of consistency with the limit
r −→ 0, keeping in mind that TE is the Eulerian time scale measured in a
reference frame moving with the mean fluid velocity (“moving Eulerian time
scale”). Denoting the longitudinal two-point two-time correlation by f(r, τ), i.e.

f(r, τ) = 〈u′2〉−1Qαα(r eα, τ) ∀α (6)

(no summation over α), Csanady’s hypothesis comes down to assume that f(r, τ)
is a function of the only variable

ξ(r, τ) =

(
r2

L2
f

+
τ2

T 2
E

)1/2

, (7)

that is
f(r, τ) = ϕ(ξ). (8)

From eqns. (7)-(8) and from the definition of the integral length and time scales,
namely Lf =

∫∞
0

f(r, 0)dr and TE =
∫∞
0

f(0, τ)dτ , it may be noticed that the
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function ϕ(ξ) obeys ∫ ∞

0

ϕ(ξ)dξ = 1 , (9)

a property that will be used later.
To assess the two-point two-time covariances Qαα(r, τ) for any direction of the

separation vector, we make use of the relationship between the longitudinal and
transverse correlation functions f(r, τ) and g(r, τ) in isotropic turbulence,

g(r, τ) = f(r, τ) +
r

2
∂f

∂r
(r, τ) , (10)

to express the three diagonal components of the space-time covariance tensor as
follows :

Qαα(r, τ) = 〈u′2〉
(

(f(r, τ) − g(r, τ))
r2
α

r2
+ g(r, τ)

)
= f(r, τ) +

r2−r2
α

2r

∂f

∂r
(r, τ) (11)

where rα denotes the component of the separation vector r in direction α, and
r2 =

∑α=3
α=1 r2

α = riri. According to Csanady’s hypothesis, f(r, τ) is assumed to
obey eqn. (8), thus

∂f

∂r
(r, τ) =

∂ξ

∂r
ϕ′(ξ) =

r

L2
fξ

ϕ′(ξ) . (12)

From eqns. (11)-(12), the diagonal space-time covariances for any direction of
the separation vector can finally be written

Qαα(r, τ) = 〈u′2〉
(

ϕ(ξ) +
r2 − r2

α

2L2
fξ

ϕ′(ξ)

)
. (13)

2.2 Particle transition probability and the asymptotic case V � 〈
u′2〉1/2

The main difficulty in using eqn. (3) on taking particle velocity fluctuations
into account lies in the dependence of the particle displacement PDF upon the
covariances Q∗

ij(τ), thus making the problem highly non linear. The analytical
results arising from such approaches, due to Mei et al [3] and later by Derevich
[4], can be summarized by the following expressions of the covariances of the fluid
seen in the directions parallel (Q∗

11) and perpendicular (Q∗
22) to the mean relative

velocity :

Q∗
11(τ) =

〈
u′2〉µ

−1/2
1 µ2

2 exp
[
−π

4
τ2

T 2
E

(
1 +

γ2

µ1

)]
, (14)

Q∗
22(τ) =

1
2
Q∗

11

[
1 +

µ2

µ1

(
1 − π

2
τ2

T 2
E

γ2

µ1

)]
, (15)
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where

γ =
V TE

Lf
and µα = 1 +

σ2
α(τ)
4

. (16)

Unfortunately, eqns. (14)-(15) are clearly unclosed because their right hand
sides involve the r.m.s. particle displacement σα which depends on Q∗

αα as
mentioned just above. Therefore the only means of determining the integral time
scales of the fluid seen from such expressions would be through some numerical
iterative procedure. As our objective is to find the integral time scales T ∗

11 and
T ∗

22 under the form of analytical expressions that can be introduced in stochastic
dispersion models, we will first investigate the simple asymptotic limit where the
mean relative velocity is much larger than the particle velocity fluctuations, i.e.

V � 〈
u′2〉1/2

(or γ � 1) and then we will try to extend the obtained expressions
in order that they remain valid in the opposite limit where only the inertia effect is
present.

In the case γ � 1 the r.m.s. particle displacement can be neglected compared to
the mean particle displacement during time τ which is 〈r〉 = Vτ . This assumption
leads to a drastic simplification of the particle displacement PDF, which can be
expressed as

Ψ(r, τ) = δ(r − Vτ) , (17)

and so the corresponding covariance of the fluid seen, hereafter denoted by
Q̃∗

αα(τ), obeys

Q̃∗
αα(τ) =

∫
Qαα(r, τ) δ(r − Vτ) dr = Qαα(Vτ, τ) . (18)

Using eqn. (13) to express Qαα(Vτ, τ), the expressions of the time scales T̃ ∗
αα

can be obtained by integration (the tilde stands for the case γ � 1). In the direction
parallel to the mean relative velocity (direction 1), eqns. (13), (18)and (9) yield

T̃ ∗
11 =

∫ ∞

0

ϕ(ξ)dτ =
TE√
1 + γ2

∫ ∞

0

ϕ(ξ)dξ =
TE√
1 + γ2

(19)

where we used

ξ =

√
V 2τ2

L2
f

+
τ2

T 2
E

=
τ

TE

√
1 + γ2 .

In the directions perpendicular to V (for example α = 2), the continuity effect
is taken into account by using eqn. (13) with r = r1 = V τ , r2 = 0 :

Q22(Vτ, τ)=〈u′2〉
[
ϕ(ξ)+

V 2τ2

2L2
fξ

ϕ′(ξ)

]
= 〈u′2〉

[
ϕ(ξ) +

γ2ξϕ′(ξ)
2(1 + γ2)

]
, (20)

hence, after integration by parts :

T̃ ∗
22 =

TE√
1 + γ2

[
1+

γ2

2(1 + γ2)

∫ ∞

0

ξϕ′(ξ)dξ

]
=

TE√
1 + γ2

[
1− γ2

2(1 + γ2)

]
. (21)
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It is worth noticing that the derivation of expressions (19) and (21) does not
require to prescribe the shape of the double velocity correlations of the fluid,
except that Csanady’s assumption implies that the longitudinal two-point one-time
correlation and the one-point two-time correlation have similar shapes.

2.3 Extension to smaller mean relative velocity

Let us introduce the integral time scale of the fluid seen for V = 0, denoted by
T ∗

0 , which depends on the Stokes number StE = τ
P
/TE where τ

P
is the particle

relaxation time. As is well known, for tracer particles (StE � 1) T ∗
0 is equal to

the Lagrangian integral time scale TL, whereas for high inertia particles, such that
StE � 1, T ∗

0 tends to the moving Eulerian time scale TE (> TL) : this is the so-
called inertia effect [7]. The time scale T ∗

0 can be estimated in terms of the Stokes
number from the semi-empirical correlation proposed by Wang and Stock [2] or
from the analytical formula derived by Derevich [5], for example.

The main objective here is to introduce the Stokes number dependence into the
evaluation of the integral time scales when crossing trajectory effects are present.
Any extension of the analytical expressions of T̃ ∗

αα obtained at large mean relative
velocity must fulfill the condition that T ∗

αα → T ∗
0 for γ → 0. In order to meet

this requirement, the simple method suggested here is to replace TE by T ∗
0 in the

results derived for large γ, i.e. in eqns. (19)-(21). Therefore the proposed formulae
are

T ∗
11 =

T ∗
0√

1 + γ∗2 , (22)

T ∗
22 =

T ∗
0√

1 + γ∗2

[
1 − γ∗2

2(1 + γ∗2)

]
, (23)

where

γ∗ =
V T ∗

0

Lf
. (24)

3 Discussion

Our expressions of the integral time scales of the fluid seen in the case γ � 1, eqns.
(19) and (21), are in agreement with the results of Mei et al. [3] and Derevich [4],
as can be proved by integrating eqns. (14)-(15) with µ1 → 1, µ2 → 1 (according

to the hypothesis V � 〈
u′2〉1/2

). Let us emphasize, however, that no assumption
has been made here concerning the velocity correlation functions or the spectrum
tensor of the fluid, whereas Mei et al. [3] and Derevich [4] had to prescribe a
functional form of the spectrum tensor (namely the Kraichnan’s model spectrum).
Unfortunately, no comparison can be made with these works in the general case
where the velocity fluctuations are not small compared to V , due to the already
mentioned unclosedness of the correlation expressions (14)-(15).
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Further comparison can be made with the proposals by Csanady [1] and by
Wang and Stock [2]. Csanady [1] assumed exponential forms of the longitudinal
two-point correlation f(r, 0) and of the one-point Eulerian time correlation
f(0, τ), and considered that the moving Eulerian time scale TE equals the
Lagrangian time scale TL. Therefore the integral time scale of the fluid seen by
a heavy particle for V = 0 is equal to the fluid Lagrangian time scale TL whatever
the particle inertia, and the formula derived by Csanady in the asymptotic case
γ � 1 remains valid in the opposite case of very small relative velocity. Therefore
the above expression (22) of the integral time scale of the fluid seen in the direction
of the mean relative velocity is in line with Csanady’s analysis.

For the particle dispersion in the lateral directions, Csanady suggested an
empirical formula so as to obtain the correct asymptotic behaviour for V −→ ∞,
i.e. T̃ ∗

22 = T̃ ∗
11/2. Extending his proposal using T ∗

0 as explained in section 2.3
(keeping in mind that TE = TL was assumed in Csanady’s work), the Csanady-
like formulation of the transverse integral time scales of the fluid seen would be :

T ∗
22,C =

T ∗
0√

1 + 4γ∗2 . (25)

Later, Wang and Stock [2] developed a theoretical analysis including the effect
of particle inertia. Still using exponential functions for f(r, 0) and f(0, τ), they
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St E = 0.072
St E = 0.36
St E = 0.72
St E = 1.44

T11
∗ /T0

∗

γ∗

Figure 1: Integral time scale ratio T ∗
11/T ∗

0 (direction of the mean relative velocity)
as a function of the parameter γ∗.
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Figure 2: Integral time scale ratio T ∗
22/T ∗

0 (direction perpendicular to the mean
relative velocity) as a function of the parameter γ∗.

extended the idea of Csanady in assuming that the combined influence of τ , T ∗
0

and γ∗ in the correlation of the fluid seen Q∗
11 can only appear through the variable

(τ/T ∗
0 )
√

1 + γ∗2. Whereas their result is the same as ours in the direction of V,
the following expression was obtained in the transverse directions :

T ∗
22,WS =

T ∗
0√

1 + γ∗2

[
1 − γ∗

2
√

1 + γ∗2

]
. (26)

To sum up, regarding the decorrelation of the fluid seen in the direction of the
mean relative velocity it is found that there is no difference between our result
and the available proposals in the literature. In contrast, some discrepancies can
be found in the expressions of the time scale of the fluid seen in the transverse
directions, see eqns. (23), (25) and (26). In Fig. 1 and 2, these various formulae
are compared with some numerical predictions issued from particle trajectory
computations in a synthetic Gaussian turbulence whose properties are as follows
(see [8]) : Von Karman spectrum, semi-Gaussian Eulerian time correlation, TE =
1.39 and TL = 0.44 (arbitrary units), ReL ≈ 180 (turbulence Reynolds number
based on integral length scale Lf ). For each value of the Stokes number StE , 105

particles were tracked.
As can be observed in Fig. 1 which displays the time scale ratio T ∗

11/T ∗
0 (i.e.

in the direction of V) as a function of γ∗, the analytical prediction compares very
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well with the numerical simulation whatever the Stokes number. As regards the
time scale of the fluid seen in the transverse directions, comparison of the three
expressions (23), (25) and (26) is provided by Fig. 2, which shows slight but
significant discrepancies between the analytical predictions. Equation (23) can be
seen to lead to the best agreement with the numerical predictions.

4 Conclusion

The theoretical expressions derived here for the integral time scales of the fluid
seen by the particles are in line with the predictions of Mei et al. [3] and Derevich
[4] in the limit of large mean relative velocity. These expressions have been
extended to make them consistent with the presence of inertia effect whatever
the mean relative velocity may be. The main result is that the predicted time
scales in the transverse direction differ from both proposals by Csanady [1] and
by Wang and Stock [2]. Comparison of the various available expressions with
some numerical predictions obtained in a synthetic Gaussian turbulence, in a large
range of mean relative velocity and particle inertia, shows that the transverse
decorrelation due to crossing-trajectory effect is better predicted by the expression
arising from the present analysis.
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