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ABSTRACT 
Weathering steel, specifically Cor-Ten (or CORTEN) steel is a material particularly exploited in the 
last century for various outdoor applications, e.g. bridges, building facades, artworks etc. In addition to 
a tensile strength comparable with other construction steels, the natural oxide of this material, that is 
common rust, has the same specific volume as the metallic core. This ensures the adhesion of the 
oxidized protective layer as for aluminium. Therefore, the stable rust layer protects the raw material 
from further corrosion. This characteristic overcomes the need for painting and maintenance. These 
properties boost the exploitation of Cor-Ten in several civil applications, also where safety is a 
fundamental requirement, e.g. guard rails used, for example, in the South-Tyrolean region along the 
highways. With the aim of verifying or optimizing such safety applications, it is important to know  
the ductile behavior of the material. Indeed, during an impact, the main purpose of the structure is to 
absorb energy and this implies that large deformations will take place. Experimental quasi-static tests 
were performed on several sample geometries made of Cor-Ten. The same tests were also numerically 
reproduced, to retrieve the actual stress state, quantify the plastic strain at failure and calibrate a ductile 
damage model. The material model is based on both the classical incremental model of plastic response 
with isotropic hardening and the phenomenological concept of damage in continuum mechanics. 
Keywords: ductile fracture, Cor-Ten, fracture locus, experimental, FEM.  

1  INTRODUCTION 
In 1933, US Steels launched a new self-passivating steel (weathering steel) with Cu, Cr and 
P in the alloy [1]. To underline its remarkable resistance to CORrosion and to TENsile stress, 
the new material was called Cor-Ten and its composition underwent some adjustments in the 
following years [2]. However, its strength properties were not the promoters of its 
exploitation and interest in research. Indeed, the anticorrosive and passivating characteristics 
of this material inspired engineers, architects and artists to use this material. Cor-Ten was 
initially exploited in the railway sector [3] in order to reduce the corrosion of wagons. It  
was also used in the construction of bridges [4] with the aim of reducing the need of painting 
and maintenance. Its application extends to building facades [5] for aesthetic reasons and in 
many outdoor artworks e.g. [6]. 
     Researchers focused on its corrosion behavior under different environmental conditions 
[7]–[9]. Indeed, Cor-Ten requires special conditions to create a protective layer; these are 
wet/dry cycles [10]. This phenomenon is negatively affected by the harmful action of Cl–, as 
may occur close to the marine environment [11] and by SO2, associated with high humidity 
especially in polluting environment [12]. Moreover, the corrosion behavior was studied with 
varying alloy elements [13], metal microstructures [14] and surfaces finish [15]. 
     Nowadays, the safety barriers (guardrail) of the Brenner Highway [16] and in most of the 
South-Tyrolean region are made in Cor-Ten. Firstly, its natural color presents a low visual 
impact (with respect to the galvanized alternative) in a UNESCO world heritage such as this 
alpine region. Secondly, the maintenance costs are expected to be low.  
     Despite experimental tests being conducted to homologate the Cor-Ten guardrail 
installations [17], in some specific areas this application is not exempt from corrosion [18]. 
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Therefore, it is possible that the installation has undergone geometric changes capable of 
compromising the safety of the structure, especially during a crash impact.  
     In the light of the above considerations, it is essential to fine-tune an FE modeling of the 
crash behavior of the Cor-Ten barriers to assert their safety performance [19] both in their 
initial conditions and after their eventual modifications undergone by maintenance and/or 
corrosion. Furthermore, the model could be exploited for traffic accident reconstruction. In 
addition, since the functional goal of safety barriers is “to absorb as much impact energy as 
possible through their deformation and at the same time maintain their integrity” [20] having 
a characterization of the Cor-Ten plastic and fracture behavior is fundamental to developing 
these models.  
     The work presented in this paper represents the first step towards fine-tuning an FE model 
able to describe the crash behavior of traffic barriers made of Cor-Ten. Therefore, the present 
paper aims to characterize the ductile behavior of the Cor-Ten through experimental quasi-
static tests with different geometries thus different level of triaxiality. The same tests were 
also numerically reproduced, to retrieve the actual stress state, quantify the plastic strain at 
failure and calibrate a ductile damage model. 

2  MATERIALS AND METHODS 
The material of the study is a Cor-Ten Weathering steel. In order to characterize the behavior 
of the material, dedicated tensile tests were performed on a MTS Criterion 45 testing 
machine. The machine is capable to apply loads up to 100 kN.  
     In order to determine the relevant constitutive law, 4 mono-axial tests were performed on 
smooth samples (Fig. 1). Applied force, crosshead displacement as well as deformation, 
measured with an extensometer, were acquired. 
     While for the elastic region the 𝜎 െ 𝜀 relation can be derived directly from the 
measurements, in the plastic (hardening) region, an inverse numerical procedure is required. 
Several simulations were performed and the F-s (Force–crosshead displacement) curve (Fig. 
2) obtained is numerically compared with the measured one. The constitutive relation can be 
described by the Voce law [21], [22]. 

𝜎 ൌ 𝐶ଵ ൅ 𝐶ଶሺ1 െ 𝑒ି஼యఌ೛ሻ ൅ 𝐶ସ𝜀௣, 

where constants 𝐶௜ (i = 1,4,2,3) are the yielding stress, the linear coefficient, the exponential 
coefficient and the so-called exponential saturation parameter, respectively, and 𝜀௣ is the 
accumulated plastic strain (Table 1).   
     In this way, with an iterative procedure, it is possible to calibrate the constitutive law.  
     Several ductile damage models have been developed over the years. One of the first works 
was carried out by Mirza et al. [23]. They studied the influence of the stress triaxiality using 
copper specimens concluding that the strain triaxiality plays a fundamental role in the failure 
of metals. Other models were proposed by Rice and Tracey [24], Hancock and Mackenzie 
[25] and Johnson and Cook [26]. All these models propose a relation between the maximum 
plastic strain at fracture 𝜀௣௘௘௤ and the triaxiality 𝜂. Triaxiality is a parameter that well 
represents the state of stress and is defined as:  
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Figure 1:  Geometries of the samples. 

 
(a) (b)

Figure 2:    (a) F-s relation – comparison between numerical and experimental curves; and  
(b) True stress–true strain curve. 

Table 1:  Voce hardening parameters for the Cor-Ten steel. 

𝐶ଵ (MPa) 𝐶ଶ (MPa) 𝐶ଷ (-) 𝐶ସ (MPa)
320 380 5 500

 
     The relation proposed by Rice and Tracey [24] is an exponential decreasing function. 
Starting from this work, Hancock and Mackenzie [25] and, successively, Johnson and Cook 
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[26] proposed new relations able to take into consideration the effects of temperature and 
strain-rate. Further studies by Bao [27]–[30], performed on aluminium samples, have shown 
that the effect of the triaxiality cannot be modelled with a monotonic function. Different 
triaxiality levels are associated with different failure mechanisms (Fig. 3). 
 

 

Figure 3:  Influence of stress triaxiality on the equivalent strain to fracture.  
Adapted from [31]. 

     It is possible to subdivide the triaxiality axis into three main regions. At low levels of 
triaxiality, the failure is mainly due to shearing; for high levels of triaxiality, the fracture is 
mainly due to the nucleation-growth-coalescence mechanism. In the intermediate region, the 
fracture originates due to a combination of the two mechanisms.  
     In this preliminary stage of the research, low triaxiality range of a Cor-Ten steel was 
studied. Further investigations are planned in order assess the 𝜂 െ 𝜀௣௘௘௤ relation also for 
higher values of triaxiality. Effects of strain rate and temperature were also neglected.  
     The sample geometries used to calibrate the ductile fracture model are shown in Fig. 1. 
The experimental tests were performed up to the rupture of the sample itself. The same 
geometries were reproduced numerically [32]–[33] by means of the open-source free solver 
Code-Aster. The choice of an open-source tool was made because it allows more flexibility 
with respect to close-source commercial software, making it possible to customise the code 
with the implementation of specific models for the analysis of the physical problem of 
interest. Simulations were interrupted in correspondence to the imposed displacement that 
has been shown experimentally to cause failure (Figs. 4–7). From the numerical results, the 
value of equivalent plastic strain at fracture 𝜀௣௘௘௤ and the triaxiality 𝜂 at the same point were 
obtained (Fig. 8). The values are shown in Table 2. 
     The equation describing the fracture locus (Fig. 9) results in: 

𝜀௣௘௘௤ ൌ 38.592 ∙ 𝜂ଶ  െ  20.611 ∙ 𝜂 ൅  3.2838. 
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Figure 4:  Numerical models of the test to retrieve plastic strain at fracture; from left 
geometries #1, #2, #3 and #4 (von Mises stress). 

 

Figure 5:  Fracture locus. 
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Figure 6:  Triaxiality and equivalent plastic strain at fracture, sample #1. 

 

Figure 7:  Triaxiality and equivalent plastic strain at fracture, sample #2. 
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Figure 8:  Triaxiality and equivalent plastic strain at fracture, sample #3. 

Table 2:  Results of the calibration procedure: triaxiality 𝜂 and equivalent  
 plastic strain at fracture 𝜀௣௘௘௤. 

 Sample geometry
 #1 #2 #3 #4

𝜂 0.25 0.23 0.21 0.39 
𝜀௣௘௘௤ 1.35 0.475 0.753 1.22 

 

 

Figure 9:  Triaxiality and equivalent plastic strain at fracture, sample #4. 

Materials and Contact Characterisation IX  225

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 124, © 2019 WIT Press



3  CONCLUSIONS 
In this research, a ductile fracture model has been calibrated for Cor-Ten weathering steel. 
The effect of strain rate and temperature has been neglected but will be included in future 
studies. The calibration of the fracture locus was performed by means of experimental tests 
on 4 different sample geometries. This characterization can thus be implemented through an 
FE model in order to study the plastic behavior of Cor-Ten during different situations. Future 
studies will be addressed to the study of the behavior of a guard rail in Cor-Ten, new and 
with some defects, during impact. 
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