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Abstract

In this paper, one provides a robust modelling for the screw-attachment of large
light partition wall between plasterboard (CPC) plate and metallic frame. The
analysis of shear behaviour of this attachment under mechanic loads has been
carried out by using an experimental approach taking into account the complex-
ity of the mechanical systems. A deterministic model is then proposed to fit the

there is variability in the experimental results and since the mean model corre-
sponds to a rough approximation, there are uncertainties in the mean model which
are taken into account with a parameter probabilistic approach. The probabilistic
approach of uncertain parameters is constructed using the Maximum Entropy Prin-
ciple under the constraints defined by the available information. The identification
of unknown parameters of the probability model is performed using the experi-
mental data which lead us to an optimization problem which has to be solved.
Finally, the numerical results are presented and validated with experiments.
Keywords: screw attachment, plasterboard, probabilistic model, experimental
identification.

1 Introduction

Nowadays, lightweight metal frames are widely used in construction. This type of

ity, the facility of assemblage and of dismantling. They are used either as load-
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experimental results. A mean model is identified using the experiments. Since

frame has many advantages such as, rapidity construction and building flexibil-

doi:10.2495/MC090111



bearing elements such as in residential, office or industrials buildings, or as non
load-bearing elements in partition walls and suspended ceilings. In this research,
we are concerned by the behaviour of a non load-bearing element. The chosen
element is a large light partition wall with plasterboard using metallic frame. The
plasterboard [cardboard-plaster-cardboard (CPC) multilayer] screwed with a metal
frame on both sides, and are made of a body of plaster stickled with two sheets
of cardboard on both sides. They are linked with the metal frame using screws.
The dimension of a large light partition currently reaches more than 10 meters.
Its mechanical and thermomechanical behaviour can be analyzed with compu-
tational models such as finite element models. Validation can be obtained using
experimental tests . However, experimental tests cannot be carried out when the
structural dimensions exceed those of the testing furnaces (generally up to three
meters). Given the complexity of such a mechanical system, uncertainties exist
in the system parameters. One very efficient way to take into account uncertain-
ties in the computational model is using the probability theory. Some previous
works have been carried out in this field and a deterministic and a probabilistic
model for thermomechanical analysis of plasterboard plate submitted to fire load
was proposed [8–10]. The present work is a extension to large light partitions. The
work is focused on the screwed attachment between the plasterboard plate and the
metallic frame. A full computational model of the structure with the attachments
would require to introduce a multiscale nonlinear micro-macro model to describe
the behaviour of the screw between the plasterboard plates and the metallic frame.
Such a model would be very difficult to develop and a lot of data would be miss-
ing to perform efficient caculations.This is why we didn’t try to develop such an
approach and we have preferred to analyze a shear behaviour of the screw in the
plasterboard plate using an experimental analysis and then fitting an equivalent
constitutive equation with the experimental databases. The first section deals with
a shear analysis of such an attachment under mechanical loads which is carried
out by using an experimental approach. The experimental results were performed
by the load-displacement curves. In the second section, a deterministic model is
then proposed to fit the average experimental results. The parameters of this mean
model are identified experimentally. Since there are variability in the experimental
results due to materials and manufacturing processes, and since the mean model
corresponds to a rough approximation, uncertainties in the mean model are taken
into account using a probabilistic approach. The next section consists in devel-
oping the probabilistic model which is constructed using the Maximum Entropy
Principle [4, 5] under the constraints defined by the available information. The
identification of the unknown parameters of the probability model is performed
again using the experimental data which leads us to the solution of the optimiza-
tion problem to be solved. Finally, the numerical results are presented and vali-
dated with experiments.

Concerning the methodology used, the identification of the probabilistic model
is performed in 2 steps. The first one is devoted to the first identification of the
mean parameters of the shear behaviour for the screw attachment in minimizing a
distance between the experimental average value and the average mean prediction.
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The second one consists in identifying both the mean parameter and the dispersion
parameter of the probabilistic model starting from the mean value identified in step
one. This means that step one must be viewed as the primary computation step to
perform the global identification in step 2.

In this paper the number of experiments is limited to a small number which is
10. It should be noted that such a number is always small due to the cost of exper-
iments. In this condition, the variability observed with this small number of exper-
iments is not representative of real statistical fluctuations which could be observed
if a large number of experiments was available. A simply average deterministic
function with known limits for variability can not be used. Such a deterministic
approach would not allow the probability to reach the bounds to be known. This
is the reason why a probabilistic approach is used and the probability model is
constructed with the powerful Information Theory. Finally, the great interest of
such an approach is to propose a practical design solution based on a probabilistic
approach and not in an usual deterministic approach. With such an approach, a
nonlinear structural statistical probabilistic analysis of large light partition walls
with plasterboard screwed with metallic frames on both sides can be carried out to
take into account large statistical fluctuations in due to the shear behaviour for the
screw attachment.

2 Experimental analysis of the shear behaviour for the
screw-attachment

2.1 Description of the experimental data

In order to analyze the shear behaviour of the screw-attachment, experiments have
been carried out using the experimental setup shown in Fig. 1 consisting in impos-
ing a relative displacement between the plasterboard plate and the metallic frame.
A sensor directly measures the vertical relative displacement between the plaster-
board plate at the screw level and the metallic frame while another load sensor
measures the load applied to the sample.

The experiments have been carried out with 10 samples. The relative displace-
ment at the screw level has been limited to xmax = 5.17mm. This limit corre-
sponds to the upper value for practical application (see Figure 2 left). Figure 2
displays the measurements obtained.

2.2 Analysis of the experimental results

The experimental results for the 10 samples are presented by 10 load-displacement
curves (see Figure 2 left). Figure 2 right displays the averaging of the 10 experi-
mental curves. It can be seen that the experimental averaging curve is monotone
increase, and then a strictly concave function on interval [0, xmax]. The mean
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Figure 1: Photo of the experimental setup.

Figure 2: Experimental results of shear behavior of the screw-attachment. Load
applied (vertical axis in N) as a function of displacement (horizontal
axis in mm). 10 measures curves (left figure), averaging of the 10 curves
(right figure).

model of the shear behaviour which is constructed in the next Section will satisfy
this fundamental property. It can also be seen that for the same value of the dis-
placement, corresponding loads is uncertain, and conversely. Hence, a stochastic
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3 Mean model of shear behaviour of the screwed attachment
and experimental identification of the mean model

The mean model of shear behaviour is constructed as an algebraic function which
fits the experimental averaging curve. Denoting x the relative displacement and y
the applied load, the mean model is written as

y (x) = a [(x + b)α − bα] (1)

In Eq (1) a, b and α are three positive real parameters. parameter. We introduce
the vector parameter r such that r = (a, b, α) which belongs to an admissible sub-
set �. Parameter r is a parameter which has to be identified using the experimental
averaging curve and which will be called the identification parameter of the mean
model.

Since function x �→ y (x) must be strictly concave in [0, xmax] with positive
values and such that the relative displacement is zero if load applied is zero, it can
be deduced that for all r in � and for all x ∈ [0, xmax] ,




y (x) ≥ 0
y (0) = 0
y′ (x) = αa (x + b)α−1

> 0
y′′ (x) = α (α − 1) a (x + b)α−2

< 0

(2)

From Eq. (2), it can easily be deduced that parameters a, b and α have to be such
that

a > 0, b > 0, 0 < α < 1 (3)

which shows that � = ]0, + ∞[ × ]0, + ∞[ × ]0, 1[ .
The mean model is fitted with the experimental average curve using the mean-

square method solving the following optimization problem

r = arg min
r ∈ �

∫ xmax

0

(
y (x) − yexp (x)

)2
dx (4)

where yexp is the experimental averaging curve.

4 Construction of the probability model to take into account
uncertainties

As explained in Section 2, the variability of the experimental result are taken into
account in modelling parameters a and b by two independent random variables A
and B for which the mean values are E {A} = a and E {B} = b where E is
the mathematical expectation. It should be noted that the independence hypothesis
of random variables A and B is justified by the fact that no information variable
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concerning the statistical dependence of A and B. In addition, α is not modelled by
a random variable and r=(a, b, α) will be considered as an updating deterministic
parameter. Consequently, deterministic Eq. (1) is replaced by the random equation

Y (x) = A [(x + B)α − Bα] (5)

For physical reason, Y must be a second-order random variable which means
that E

{
Y 2

}
< +∞. It can be verified that this condition is satisfied if E

{
A2

}
<

+∞ and E
{
B2

}
< +∞. From Eq. (5), it can be deduced that, if the applied load

y is given, then the relative displacement x becomes a random variable X such
that

X =
( y

A
+ Bα

) 1
α − B (6)

Identically, for physical reason, Xα must be a second-order random variable for
all α in ]0, 1[ which means that E

{
X2α

}
< +∞. Such a condition is satisfied if

E
{
A−2

}
< +∞. In addition this last condition implies that E

{
A2

}
< +∞. The

available information of random variable A are then: (i) its support is ]0; + ∞[
, (ii) its mean value E {A} = a , (iii) E

{
A−2

}
< +∞. The maximum entropy

principle with this available information yields for the probability density function
pA(a) of A,

pA(a) = 1]0, +∞[ (a)
1
a

(
1
δ2
A

)( 1
δ2
A

)
1

Γ
(

1
δ2

A

)
(

a

a

) 1
δ2
A

−1

exp
(
− a

aδ2
A

)
(7)

where δA = σA/a is the coefficient of variation of A, satisfying δA <
√

α/2, σA

is the standard deviation of A, Γ is the Gamma function and where 1K (a) = 1
if a ∈ K and = 0 if a /∈ K . For the random variable B, the available infor-
mation are (i) its support is ]0; + ∞[ , (ii) its mean value E {B} = b, (iii)
E

{
B2

}
= b2

(
1 + δ2

B

)
< +∞. The probability density function is a truncated

Gaussian function written as

pB(b) = 1]0, +∞[ (b)C0 exp
(−λ1b − λ2b

2
)

(8)

where (C0, λ1, λ2) are the value calculated by solving the system of equations




C0

∫ +∞

0

b. exp
(−λ1b − λ2b

2
)
db = b

C0

∫ +∞

0

b2. exp
(−λ1b − λ2b

2
)
db = b2

(
1 + δ2

B

)

C0

∫ +∞

0

exp
(−λ1b − λ2b

2
)
db = 1

(9)

Consequently, probability density functions pA and pB depend only on vector
r and on dispersion vector parameter δ = (δA, δB) belonging to an admissible set
∆. Parameter δ allows the dispersion induced by uncertainties to be controlled.
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5 Experimental identification of parameter

As explained in Section 4 there are two types of parameters which can be identi-
fied: the updating parameter r and the dispersion parameter δ. Below these
two parameters are identified by using the 10 experimental curves
yexp, 1 (x) , ..., yexp, 10 (x) for x ∈ [0, xmax]. The identification is performed in
two steps. The first one consists in calculating r0 and δ0 as the solution of the
optimization problem based on mean-squared method. The second step consists in
improving this first identification using the maximum likelihood method. This non
convex optimization problem is solved around the optimal points (r0, δ0) using the
trial method.

6 Application and experimental validation

In this section, one presents the numerical application for the parameter
identification and the validation with experimental data. The parameter of the
mean model for shear behaviour screw attachment between plasterboard plate and
the metallic frame defined in Section 3 is identified by minimizing the cost func-
tion defined in Eq. (4). The optimal parameter obtained is ropt

0 = (a, b, α) =
(16598.73; 0.215; 0.028) . The comparison between mean model and average
experimental result is presented in the figure 3.
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Figure 3: Comparison of the average experimental curve (thick solid line) with the
mean model (thin solid line).

The stochastic model is then constructed by using Section 4. The vector-valued
parameter (r, δ) = (a, b, α, δA, δB) is identified as explained in Section 5 and
yields ropt = (16210; 0.172; 0.0255) and δopt = (0.012, 0.2389). Figure 4 dis-
plays the confidence region for a probability level PC = 0.95.
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Figure 4: Maximum likelihood method. Comparison of the 10 experimental curves
(ten thin solid lines) with (1) Average experimental data (thick solid
line); (2) Confidence region of the optimal stochastic model (grey
region).

7 Conclusion

In this paper, one has presented the construction and the experimental validation of
a stochastic constitutive equation for screw-attachment. An experimental approach
has been carried out to identify the shear behaviour of the attachment. A mean
model then has been proposed to fit with the average experimental data. Due to
data uncertainties and due to the variability of experimental data, a probabilistic
model has been introduced to increase the robustness of the constitutive equation.
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