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Abstract

This work presents a description of partial wave reflection and
transmission effects for rubble mound structures using time dependent
depth averaged equations of the type used in a Boussinesq non linear
wave model and in a hyperbolic linear wave model. Energy losses due to
friction effects on the rough slope of a rubble mound structure can be
represented using a friction area in front of a  vertically faced
homogeneous porous structure. The flow resistance within the structure
is simulated in a similar way by incorporating an additional term in the
momentum equation given by a Dupuit-Forchheimer relationship.

1. Introduction

Prediction of wave reflection and transmission for porous rubble mounds
plays an important role in the estimation of the wave field inside a
harbour. Rubble mounds are widely used in harbour engineering because
of their ability to absorb significant amount of wave energy. This often
helps to make access to the harbour easier in bad weather by avoiding
confused seas at the entrance due to reflected wave energy and in some
cases it can help to limit the disturbance inside the harbour.

The simple theoretical solutions for wave reflection and transmission
for porous rubble mound breakwaters are not applicable in a complicated
harbour geometry. On the other hand a numerical short wave model
which is applied for the harbour design could be used. However, in order
to account for wave dissipation, a full description of the flow both outside
and inside the structure would require an extension of the wave models in
the run-up region (incorporating breaking and using to very small space
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and time steps) as well as a coupling with a 2DV model for the internal
flow (Hannoura and McCorquodale, [3]). A different way, proposed in
the present work, is the representation of such structures in a wave model
by incorporating new terms in the momentum equation. The method is
based on a theory for the partial reflection and transmission of shallow
water waves incident on rubble mound breakwaters which has been
presented by Madsen Ole and White [S] (hereinafter referred to as MW).
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Figure 1. Realistic breakwater (top) and its equivalent structure with
friction area in front (bottom).

The basic approach in MW theory is to assume that energy is
dissipated by two separate mechanisms: one is the frictional effect of
having a rough slope and the second is the frictional effect on the flow
within the porous structure. Based on the MW method the two above
dissipation mechanisms are represented separately in the time dependent
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wave model (Boussinesq non linear model or ‘mild slope’ equation linear
model). The approach adopted here is to represent the rough slope by a
frictional area in front of the hydraulically equivalent structure while for
the representation of the equivalent permeable structure a Dupuit-
Forchheimer relationship is used. This representation is shown
schematically in Figure 1.

In section 2 we show how to represent the frictional area in front of
the structure while in section 3 the representation of the equivalent
permeable structure is considered. Results of the method are represented
in sections 4 and 5.

2. Representation of rough slopes in a time dependent intraperiod
wave model.

The first point to make concerns the length of the frictional area in front
of the equivalent structure. It is a simple matter to show that by making
this length equal about twice the active slope length, there will be, to a
reasonable approximation, an equivalent number of wavelengths within
the frictional area to the number of wavelengths on the active slope
length. This measure seems sensible in that a partially standing wave
system will develop on the actual slope which in turn will affect the
amount of energy dissipation. By attempting to reproduce a similar
partially standing wave system in the equivalent frictional area, in the
wave model, it should be possible to obtain better representation of
energy losses. It is of interest to note that the length of the frictional area
was varied outside this suggested length in runs of the wave model, but
the suggested length generally gave the best results.

The second point to make is that based on experimental data
reflection coefficients for rough impermeable slopes can be assumed, to a
reasonable degree of accuracy to vary linearly with wave height. This
suggests that a linear friction term can be used in the Boussinesq model to
represent energy losses on the slope. Therefore, the one dimensional
Boussinesq equations in the frictional area take the form (Karambas and
Koutitas, [4]):
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where ( is the surface elevation, U is the depth averaged velocity, d is the
water depth and v is a coefficient given by:
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here f; is a dimensionless linear friction coefficient, o is the slope angle
and dn is the average stone diameter.

In a similar way the linear time dependent ‘mild slope’ equations (for
periodic waves as proposed by Copeland [2] are written:
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in which c is the wave celerity given from the Airy theory.

All of the quantities in (2) are well defined apart from the friction
coefficient fi. But this coefficient can be defined once the reflection
coefficient Rs for the rough (impermeable) slope has been determined
from the MW theory.

The Boussinesq model can also be used with random waves in
harbour applications and so it is necessary to decide which random wave
parameters are to be used when obtaining reflection coefficients from the
MW theory. Thus as a representative wave period the zero crossing period
of the random waves can be adopted.

Without loss of generality we can assume constant depth. We also
assume that the frictional area lies between 0<x< 2S, with a perfectly
reflecting boundary at x=2Sw. A plane wave of amplitude a; and radian
frequency o is assumed to be incident on the frictional area from the left
in Figure 1 (for x<0) with a reflected wave of amplitude a, travelling back
from the area. Thus, outside the friction area (y=0) we have:

(wt-lx i(wt+kx)
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T
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where, for the Boussinesq model:



E@; Transactions on Ecology and the Environment vol 12, © 1996 WIT Press, www.witpress.com, ISSN 1743-3541

Hydraulic Engineering Software 419

(1)2

K= "
gd—o 5

and for the ‘mild-slope’ model:

w?=gk tankd

(which is the dispersion relationship form Airy linear theory).

Inside the friction area we let

i(wt~Kx) i wt+Kx)

+ a,e

C=ae 2

where K is now complex and satisfies (for the Boussinesq model):

2

mz(l +K? d?) — ik ? = gdK?
and for the ‘mild-slope’ model:

o’ —ioK * = ¢’K?

We can solve for the reflection coefficient Rs=lai/ar|using the
boundary conditions that surface elevation and horizontal velocity be
continuous at x=0 and that the horizontal velocity vanish on the reflecting
boundary at x=2Sw. This gives,

O]

The complex wave number K is a function of the friction coefficient f;
so by solving the above equation by iteration, for a given value of the
reflection coefficient R from the MW theory, we can define the friction
factor to use in the Boussinesq model and the ‘mild-slope’ model.
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3. Representation of permeable structures in the wave models

This aspect is relatively straight forward to represent. The MW theory
already reduces a quite general multi-layered rubble mound structure to
an equivalent vertically faced homogeneous porous structure. It is then an
easy matter to represent this structure directly in a depth averaged model
like that based on the Boussinesq or the ‘mild-slope’ equations. The only
difference here is that the shallow water wave equations for a porous
medium used in the MW theory are generalised to the equivalent
Boussinesq or ‘mild-slope’ equations for a porous medium. Thus,
adopting a Dupuit-Forchheimer relationship. the Boussinesq equations
(1) are rewritten:
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and the ‘mild-slope’ equations (3):
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Here, n is the porosity of the equivalent structure and a and § coefficients
of laminar and turbulent flow resistance given by:
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in which v is the kinematic coefficient of viscosity and a, =2700, B.=2.7 as
suggested by Madsen and White when representing physical models.
Clearly, when representing real structures more realistic parameters can be
used in the numerical models.



@ Transactions on Ecology and the Environment vol lH?&W{L[ Eﬁﬁ%&‘f’iﬁ@smﬁﬁé”%ﬁ“

As the Boussinesq model is non-linear, we can include the full non-
linear form of the frictional term in the momentum equation (5). The
same non linear term is also incorporated in the linear equation (6)
without affecting its numerical stability.

4. Results for rough impermeable slopes

Starting with the Madsen and White experiments for an impermeable
rubble mound slope with a stone size of 25mm and a water depth at the
toe of the slope of 0.3m, we use the technique described in Section 2 to
represent partial reflections in the wave models. The values of the various
quantities appearing in the momentum equations (of 1 and 3) are listed
below along with the Madsen and White experimental reflection
coefficients, together with the reflection coefficients actually obtained in
running the Boussinesq and the ‘mild slope’ model. The grid size used in
the models was 0.125m.

Slope Wave period Reflection coefficient
®
Boussinesq model ‘Mild-slope’ Experi-
model ments
lin 1.5 1.6 0.75 0.75 0,77
1.8 0.81 0.79 0,79
2.0 0.86 0.84 0,83
lin 2 1.6 0.70 0.69 0,62
1.8 0.75 0,73 0,74
2.0 0.80 0,77 0,78
1in3 1.6 0.38 0,39 0,46
1.8 0.45 0,47 0,48
2.0 0.53 0,52 0,54

In applying the technique described in Section 2 it is necessary to
choose a representative wave period for the set of experimental results.
‘This was taken to be the middle period T of 1.8s. It meant that the friction
factor f; was determined for each slope using equation (4) with the
reflection coefficient Rs put equal to the experimental value for T=1.8s.
This same friction factor was then used for the other two periods. The
other point to note is that the value of tan as in equation (2) is put to 0.5
for the 1 in 1.5 slope. This just helps to make the friction factor f;
reasonably independent of slope angle.

On the whole, the reflection coefficients finally obtained in the wave
models produce a reasonable match to the experimental values measured
by Madsen and White. The fact that such a match can be obtained for a
range of wave periods, with just one friction factor for each slope,
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suggests that the technique should work satisfactorily for the more
realistic case of a random sea where energy is spread over a number of
wave period components.

5. Results for permeable structures

The example chosen for application of the numerical models is the
permeable rough slope shown at the top of Figure 1 consisting of a single
armour layer with a stone size of 49mm on a slope of 1 in 2. The water
depth is 0.38m. Using MW theory we can calculate the width W of the
equivalent homogeneous vertically faced breakwater with a stone size of
25mm. This defines the dimensions of the area in the wave models over
which equations (5) and (6) are used. The values of porosity (n) and the
friction coefficients (a) and (B) correspond with those given in Section 3
ie.:

a=4.94
B=741.32

By carrying out tests with just the friction area represented in the
wave models it was established that dissipation of energy on the rough
slope was being well represented. The length of the frictional area in front
of the equivalent structure (2Sw in Figure 1) was taken to correspond to
twice the active slope length i.e. approximately 1.5m. And, in running the
Boussinesq and the ‘mild-slope’ model, reflection coefficients of 0.82 and
0.79, respectively, were obtained for the 2.2s wave period case. This
compares with an expected reflection coefficient of about 0.8 for the slope
alone.

Having checked the frictional area on its own it was combined with
the equivalent porous structure. In this case the example chosen was one
that had been flume tested at HR Wallingford (Bowers and Budin, [1]).
The following results were obtained for single period waves and with a
grid size of 0.2m in the wave models.

Wave period Wave height A Reflection coefficient
©®) (m) (m)
Boussin  ‘Mild-  Experi-
esq slope’ ments
model  model

1.4 0.06 0.8 0.3 0.27 0.28

0.16 0.8 0.28 0.28 0.29

2.2 0.06 1.0 0.56 0.54 0.53

As in the previous section, the agreement between the wave model
reflection coefficients and experimental values is very encouraging. The
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experimental results are, in fact, average reflection coefficients obtained
with random sea conditions with zero crossing periods of 1.4s and 2.2s.

Conclusions

The representation of rubble mound structures in the wave model has
been checked against physical model flume results for partial reflection
and transmission coefficients using single period waves. Encouraging
agreement was obtained with experimental results, showing that the
proposed technique provides a robust method of representing partial
reflection and transmission in Boussinesq and in linear ‘mild-slope’
models.
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