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Abstract 

The meaning of the word cavitation is not known or understandable to many 
people. The definition, which is commonly known, for such phenomena is that 
the formation of cavities or bubbles is encouraged by a pressure change in the 
surroundings. However, cavitation is much more complex. A large amount of 
research work and studies on the dynamics of the cavitation phenomenon via 
numerical investigations or by means of experimental studies have been 
performed in this sense over past years in order to improve the understanding of 
the various physical processes involved in this phenomenon. This paper presents 
a literature survey of existing studies on the cavitation phenomenon and aims to 
give a comprehensive collection of knowledge about it. The present work does 
not aim to review all published results in this field. The paper focuses on specific 
available published results, concerning the most common cavitation types 
especially acoustic cavitation. The authors like to provide some recommended 
notices and the main efforts which must be carried out to develop and contribute 
more efficient knowledge about the real situation and the main results associated 
with this phenomenon. 
Keywords: cavitation, ultrasonic, bubble dynamics, acoustic, sonoluminesence, 
bubble motion equations, sonochemistry.  

1 Introduction 

Cavitation phenomena have been perceptible for a long time. The fundamental 
knowledge of this science has been derived from marine technology. In the last 
years of the eighteenth century, complications with design and development of 
ship propellers happened; the plans at that time were to control and achieve 
higher ship speeds. 
     In 1894 the British torpedo-boat destroyer “Daring” sailed at a speed less than 
the fast speed design. The actual speed was 24 kn, while it was expected to be  
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27 kn. The engineers thought the reduced speed was due to the formation of 
water vapour bubbles on the blades, and in that way the propeller performance 
and consequently the speed was reduced. At the same time, another ship met a 
similar problem and it was realized that, when the propeller starts to work, high 
pressure gradients occurred, and liquid around the propeller was torn apart and 
bubbles were formed. A large part of the engine power was consumed in the 
formation of these bubbles instead of moving the ship forward. The second 
problem appearing was that the implosion of these bubbles was accompanied by 
high pressure and temperature and as a consequence, erosion and pitting of the 
propeller blades occurred. Following a proposal by Thorneycroft and Barnaby, 
1895 [1], to explain and define this phenomenon of harmful propeller behavior, 
the word “Cavitation” was introduced and it is derived from the Latin word 
“cavus” which means “hollow” in English [2].  
     The understanding of the dynamics of the cavitation phenomenon is of 
importance in many various applications, and the phenomenon plays an 
important role in different areas of science and technology including industrial 
processes, power systems, propulsion systems, turbo-machinery, ships, 
submarines, hydraulics, acoustics, cleaning, sonochemistry and medicine. 
However, well-known effects of the cavitation phenomenon include generation 
of excessive vibration and noise, erosion, reduced hydraulic performance and 
structural damages. Despite that the cavitation phenomenon has damaging 
effects, it was soon also realized that the cavitation can be useful and it has 
become a field of huge interest in different scientific subjects and applications.  
 

2 Cavitation classification 

Depending on the principles of the cavitation phenomenon, there are different 
types of cavitation as listed below [3]. 

2.1 Acoustic cavitation 

This type of cavitation occurs when a liquid is subjected to a sound wave. 
Usually the acoustic waves create pressure variations through the liquid and if 
these variations in the pressure are great enough the cavities will grow. The tiny 
bubble is thus set into motion (expansion and compression). Acoustic cavitation 
can be classified into stable and transient cavitation [4, 5].  

 Stable cavitation 
Stable cavitation is defined by the creation and oscillation of gas bubbles in a 
liquid. 

 Transient cavitation  
Transient cavitation comes up when bubbles collapse and release a large amount 
of energy. 
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2.2 Hydrodynamic cavitation 

This type of cavitation is induced by pressure variation in a flowing liquid. 
Hydrodynamic cavitation can be further classified into three types:  

 Travelling cavitation  
Travelling cavitation occurs when a bubble or a cavity grows and travels along 
with the liquid motion and accordingly expands and collapses. 

 Fixed cavitation  
Fixed cavitation occurs when a cavity or a bubble is attached to a rigid boundary 
or an immersed body and remains fixed at a certain position during an overall 
unsteady state. 

 Vortex cavitation  
Vortex cavitation occurs in the courses of vortices, which form in regions of high 
shear, and often occurs on the blade tips of propellers. Thus it is also called tip 
cavitation. 

2.3 Optic cavitation 

This type of cavitation is produced by photons of high intensity, which are 
rupturing the liquid. 

2.4 Particle cavitation 

This type of cavitation is produced by any other type of high energy elementary 
particles, e.g. a proton. 
     It has been pointed out that optic and particle cavitation requires an intensive 
energy source, e.g. laser. Because of the expensive operation cost, these methods 
are not appropriate for large-scale processes. On the other hand acoustic and 
hydrodynamic cavitation has more potential towards large scale applications, 
mainly due to the simplicity of inducing the cavitation [6]. 
     The acoustic cavitation is considered as one of the more recently observed 
phenomenon and is used presently more and more. It basically uses the 
ultrasound and bubble power in the applications. A multitude of useful physical 
and chemical processes is promoted by ultrasonic cavitation.  
     The chemical effects of using sound waves in the cavitation phenomenon to 
enhance the chemical reaction processes were first recognized by Richards and 
Loomis [7]. On the other hand, the first applications reported in the literature 
were the use of ultrasound induced cavitation to degrade a biological polymer [8]. 
The enormous development which happened has led to more interest of using the 
sound technologies to induce cavitation and to discover more applications, such 
as, sonochemistry [9–15], boiling heat transfer [16], cleaning of nanoparticles 
[17], design of sonochemical reactors [18, 19], degradation of chemical or 
biological pollutants [20–25], production of polymer [26], oil and natural gas 
industry [27], and improved adhesion [28]. The advantage of using acoustic 
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cavitation for these applications is that much more mild operating conditions are 
utilised in comparison to conventional techniques and many reactions which may 
require toxic reagents or solvents are not necessary [29].  

     Also, cavitation plays a major role in various medical applications, such as, 
generation of both intended surgical effects and unwanted collateral effects [30], 
controlled permeation of cell membrane [31–35], fat loss technology [36], 
removal of kidney stones [37], and drug release by using acoustic cavitation as a 
triggering mechanism. By using micelles, liposomes, microbubbles, or polymers 
that encapsulate the drug, the mechanical or chemical effects induced by 
ultrasound have been shown to trigger drug release in a controlled manner  
[38–41], and treating cancerous cells or tumors [42]. 

3 Bubble motion equation  

In 1917, Lord Rayleigh [43] published the first mathematical model describing a 
cavitation event concerned with hydrodynamically-generated cavities in an 
incompressible fluid and neglected surface tension and liquid viscosity. The 
governing equation reads,  
 
                                              PRPRRR
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where R is the bubble radius, R is the bubble surface velocity, R  is the bubble 
surface acceleration, ρ is the liquid density, P∞ is the liquid pressure far from the 
bubble, P(R) is the liquid pressure at the bubble surface, and also P(R) represents 
the pressure for the bubble content. 
     The study of the cavitation phenomenon performed by Lord Rayleigh’s was 
extended by many investigators and scientists including Plesset and others  
[44–53] and the modified Rayleigh equation became often called the Rayleigh-
Plesset equation. 
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where Pg is the gas pressure inside the bubble, σ the surface tension, and µ is the 
liquid viscosity. 
     The first systematic treatment of acoustically-generated cavities was carried 
out by Blake [51], followed by Noltingk and Neppiras [52, 53]. Since then, many 
groups have become active.    
     A polytropic approximation for the gas inside the bubble was assumed by 
Noltingk and Neppiras [52, 53], and they neglected the effect of liquid viscosity. 
The initial internal pressure of the gas inside the bubble was assumed to follow, 
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     Based on the Rayleigh-Plesset equation, the equation describe the motion of 
the bubble surface as,  
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where Po is hydrostatic pressure in the liquid, σ the surface tension, Ro is the 
initial bubble radius, and γ specific heat ratio of the gas. 
     Poritsky [54] added a liquid viscosity term to eqn. (4), and the resulting 
equation is known as the Poritsky equation. 
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     For acoustic cavitation phenomenon the pressure at infinity varies as follows 
[55], 
   

                                       tPPtP Ao sin)(                                  (6) 

 
where Po is the hydrostatic pressure, PA  is the time dependent acoustic pressure, 
and ω is the angular frequency.  
     Neppiras [56], stated that “eqn. (4) accurately describes the motion of the 
cavity-surface over a limited number of cycles for all types of stable cavitation, 
and also for transients where the bubble surface velocity never exceeds about 1/5 
of the velocity of sound”, but under violent transient conditions the bubble 
surface velocity may approach, or exceed, the velocity of sound.  
     A first step towards a more realistic treatment was the assumption that the 
motion in the liquid is isentropic (constant sound velocity). Such a treatment was 
carried out by Trilling [57]. The equation of state defining the sound velocity 
then becomes,  
 

                             /P  constant;  2/ cP  constant                            (7)  

 
where P, ρ are the liquid pressure and density respectively, and c is the sound 
velocity.   
     The “Acoustic Approximation” implied by using the state equation (7) 
confines the treatment to cases where the velocity is always small compared with 
c, that is, the “Acoustical Mach Number”,  cRM /   << 1 [56].   
     Many modifications introduced to include the sound speed effect in the 
bubble dynamics, and the most important ones were invented by Keller and  
co-workers [58–60], and become well known as the Keller-Kolodner equation. 
This equation reads, 
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where R is the bubble radius, c speed of sound in the liquid, R is the bubble 
surface velocity, R  is the bubble surface acceleration, ρL is the liquid density, 
and PL(R) is the liquid pressure at the bubble surface.  
     The above equation is of great historical importance and is fundamental in the 
analysis of bubble behaviour. 

4 Physics of bubble oscillations in acoustic cavitation 

The ultrasound is a type of sound wave and it is propagated in a series of 
compression and rarefaction waves induced in the molecules of the medium 
through which it passes. At sufficiently high power the rarefaction cycle may 
exceed the attractive forces of the molecules of the liquid and cavitation bubbles 
will form. After the formation of the bubbles in the liquid, the sound pressure 
field (Ultrasound) forces these bubbles into nonlinear oscillation, this 
phenomenon is called acoustic cavitation.   
     During the acoustic cavitation, bubbles produce high power and this 
phenomenon has caught the attention of scientists and researchers and is still the 
focus of many research works. During this process, the bubble is compressed 
which leads to generation of short flashes of light periodically and production of 
very high pressure and temperature at the end of the collapse event. These 
parameters with high values can be harnessed in different medical and industrial 
applications. 

4.1 Light emission-sonoluminescence  

The story of light emission from bubbles started in 1933 by two different groups 
of researchers. Marinesco and Trillat [61] subjected water to a high intensity 
ultrasound and placed a photographic plate into the water. They observed a 
blackening of the plates. The mechanism was unclear. Frenzel and Schultes  
[62], conducted similar experiments and found that it was not the ultrasound 
directly that was blackening the plates but the bubbles appearing upon rupturing 
the liquid. 
     Gaitan [63] succeeded to present the first recorded observation of 
sonoluminescence generated by a single bubble under the action of a sound field.  
Sonoluminescence (SL) is the phenomenon of light emission associated with the 
collapse of bubbles oscillating under an ultrasonic pressure field [64].  
Sonoluminescence phenomenon can be divided into single bubble 
sonoluminescence (SBSL) and multiple bubble sonoluminescence (MBSL). The 
first one characterizes the emission of light from a single acoustically driven 
bubble in a liquid. On the other hand, the second type refers to the light emitted 
by multiple bubbles at higher acoustic pressures [65]. These flashes of light have 
intense ultraviolet light, see fig. 1, which activate the catalysts to decompose the 
organic compounds in water. Thus, the researchers and scientists continue to 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 83, © 2014 WIT Press

356  Advanced Computational Methods and Experiments in Heat Transfer XIII



study this phenomenon to find out the conditions that give the highest flashes in 
water to apply this phenomenon in the water-treatment techniques [66].    
According to Google scholar about 7940 articles containing the term 
sonoluminescence have been published since 1990.  
 

 

Figure 1: Colour photograph of the light emitted by a trapped, positionally 
unstable bubble. Adapted from reference [71]. 

4.2 Temperature and pressure during bubble collapse 

The bubble in acoustic cavitation produces very high pressure and temperature 
during collapse. As a result of the intensive compression of the bubble content 
during the collapse in liquids under ultrasound, the temperature can approach 
thousands of degrees Celsius, thus reaching the conditions on the surface of the 
sun. Also, the pressure can increase up to hundreds of atmospheres, approaching 
a condition which is similar to the pressure at the bottom of the ocean [67], see 
fig 2. Temperature and pressure fields inside an acoustic bubble, represent the 
most important characteristics of the acoustic cavitation process. These 
conditions represent the driving forces for many processes. 

 

Figure 2: Acoustic cavitation mechanism. Adapted from references [68–70]. 
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5 Conclusions  

This article gave a comprehensive collection of knowledge and explanation of 
the principles of the acoustic cavitation phenomenon in order to bring more 
attention to it and provided basic information for researchers who like to 
simulate and study this field. 
     The study of the cavitation phenomenon might be the start in seeking the 
answers to many questions: What are the major forces which effect bubble 
dynamics? Where are these forces coming from? 
     Some types of cavitation phenomena have negative effects that include 
generation of excessive vibration and noise, erosion, reduced hydraulic 
performance and structural damages. Thus, the main focus here should answer 
the question, how to prevent cavitation? 
     However, despite that some types of cavitation have damaging effects, it was 
also realized that other types can be useful and it has become a field of huge 
interest in different scientific subjects and applications. The main focus in this 
case should answer the question, how to develop these types? How to establish 
more reasonable models to investigate the bubble dynamics?  
     Finally the research in this field should pay more attention to the future of 
acoustic cavitation. 
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