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Abstract 

Many studies are conducted for pyramidal spine fins relating to temperature 
profiles and fin efficiencies. However, it is found that a deeper look into the 
boundary conditions is required. The conditions at the base are simple enough, 
but the conditions at the tip are more complicated. Despite what condition is 
applied to the tip, the value at the tip actually has a specific value that is a 
function of the square root of the Biot number. This result is proven using basic 
principles from calculus, like the Limit and L’Hospital’s rule. 
Keywords: heat, transfer, exchanger, fin, efficiency, surface, area, Biot, spine, 
conduction, convection. 

1 Introduction 

The subject in question is the boundary conditions for a pyramidal spine fin.  
Studies are conducted that investigate the temperature profiles and  
fin efficiencies relating to a spine fin – for both triangular and square  
cross-sectional areas [1–5]. During the course of these investigations, a peculiar 
phenomenon is noticed with respect to the temperature profile of the spine: the 
analytical solution is the same regardless of the boundary condition defined at 
the spine tip. This is confirmed using professional computational software, 
MAPLE; and also by finite differences numerical analysis via fortran software 
that is written from scratch. The intent here is to prove, using calculus and 
differential equations, that the temperature profile of a spine fin is uniquely a 
function of the square root of the Biot number; and is not dependent on the 
boundary condition specified at the spine tip. 
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2 Spine fin geometry 

Several different types of spine geometries are studied in the literature, as 
already stated; however, in this work the equilateral triangular cross-sectional 
area is studied for simplicity.  The geometry is presented in fig.1 and fig. 2. 
 
 

 

 

 

Figure 1: Schematic of spine geometrical parameters. 

 

     Thus, the necessary equations describing the geometry are developed. The 
geometrical equations are then used to solve the energy balance equation. To 
start, the width of each spine side, l; the perimeter, P; and the cross-sectional 
area, Ac; are all defined as linear or quadratic functions that decrease as they 
approach the spine tip: 
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Figure 2: Spatial Coordinate system used in model development. 

3 Spine fin temperature profile: fixed tip temperature 
condition 

The spine fin temperature profile is determined by conducting an energy balance 
around the fin. The boundary condition at the tip of the fin is assumed to be a 
fixed temperature condition.  Boundary conditions for the spine fin are T(0) = Tb 
and T(b) = T. A temperature profile is then determined by using the energy 
balance, as given in eqn. (6), along with eqns (1)–(5). 
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     It is customary in heat transfer studies to use dimensionless variables.  For 
this reason, eqn (6) is transformed into eqn (7), with the help of eqns (8)–(9) – 
note the following boundary conditions: (0) = 1 and (1) = 0. 
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     The solution to eqn (7) is not directly attainable. Therefore, it is transformed 
into a Bessel’s equation, with the help of eqns (10)–(12). The Bessel’s equation 
is presented in eqn (13). 
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     The solution to eqn (13) is given in eqn (14). If Θ(1) = 0, then C2 must equal 
0 since Y1(0) = infinity.  Applying the second boundary condition, Θ(0) = 1, C1 
is defined. The results are given in eqns (14)–(17), where eqn (16) is the final 
form of the equation that describes the temperature profile throughout the length 
of the fin – note that the results of eqn (16) are also plotted in fig 3. 
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Figure 3:  versus  for specified values of . 

     Observe that  is simply the Biot number – the ratio between conduction and 
convection heat transfer (see Carranza [1] for more detail). Other geometries for 
spine fins are studied as well, with different types of cross-sectional area: 
isosceles triangular, scalene triangular, and equilateral square. It is shown that in 
all 4 cases that temperature profile is described by eqn (16) – the only thing that 
changes is the definition of . Carranza explains this in more detail [5]. 
     It is now time to focus on eqn (16). Firstly define u = 2 1/2 (1-X)1/2. Next, 
perform the limit on eqn (16) as X approaches 1. L’Hospital’s rule must be used 
in the process. It is clear from eqn (18) that Θ approaches a definite value as X 
approaches 1. 
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4 Spine fin temperature profile: adiabatic fin tip condition 

For the case of adiabatic fin tip condition, eqn (14) must be examined with the 
following boundary conditions: Θ(0) = 1 and dΘ(1)/dX = 0. This time u= 2 1/2 
(X-1)1/2. Applying the adiabatic fin tip condition to eqn (14) yields C2 = 0, since 
Y2(0) approaches infinity. Thus, the net result of applying an adiabatic fin tip 
condition is simply eqns (16) and (18). The details are given in eqns (19) and 
(20). 
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5 Results and conclusions 

It is proven that the value of Θ(1) for a pyramidal spine fin, as given in 
references [1–5], is always a specific value that is a function of the square root of 
the Biot number: 
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     Equation 21 is compared to fig. 3 and is also compared to the results obtained 
from numerical analysis, finite differences.  There is no doubt, Θ equals the 
value given in eqn 21 when X equals 1 – as is proven by calculus and rigorous 
computation. 

Nomenclature 

A area 
C integration constant 
I modified Bessel function 
J Bessel function 
P perimeter 
T temperature 
Y Bessel function of the second kind 
a spine fin side width at base 
b spine fin length 
ho outside individual heat transfer coefficient 
km thermal conductivity of the fin 
l spine fin side width as a function of x 
u dummy variable 
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x spatial coordinate 
y dummy variable 
 dimensionless temperature 
 dimensionless length 
 Biot number 
β a/b 
 
Subscripts 
b base of fin 
c cross-section 
s surface 
 bulk fluid conditions 
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