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Abstract 

The SKN (Synthetic Kernel) approximation is applied to a two-dimensional 
homogeneous cylindrical participating medium with isotropic scattering. The 
SKN equations are tested against benchmark problems consisting of cold 
homogeneous participating medium. The solutions are compared with those 
obtained by various methods available in the literature. The SK3 approximation 
results for geometries of very large and very small aspect ratios are in excellent 
agreement with those of benchmark solutions. The SK3 solutions with moderate 
aspect ratios are accurate within several percent. 
Keywords: synthetic kernel method, participating medium, isotropic scattering, 
two-dimensional cylindrical medium. 

1 Introduction 

The SKN approximation which was developed to solve neutron transport equation 
can also be applied to radiative integral transfer equation (RITE) [1]. The 
significance of solving the integral equations is that one has to deal with the 
spatial variables rather than spatial and angular variables that exist in radiative 
transfer equation (RTE)-Boltzmann’s equation. Thus the solutions obtained from 
the integral equations do not exhibit ray effect which is a phenomena that 
plagues discrete ordinates and similar methods. Ray effect is the result of 
discretization of angular variables.  
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The SKN method is applied to the RITE by substituting approximations to its 
radiative transfer kernels through a sum of exponentials, as in the exponential 
kernel approximation. Then RITE can be reduced into a set of coupled 
second-order partial differential equations, which will be referred to as the SKN 
equations. Physical boundary conditions are embedded in the force functions 
(surface integrals) of the RITE which are exactly preserved in the SKN equations; 
however, boundary conditions (BCs) of mathematical in nature are required to 
solve the SKN equations. 

Recently, the applicability and validity of the SKN approximation to thermal 
radiative transfer problems of one dimensional plane parallel and spherical 
geometries, and two-dimensional participating homogeneous and 
inhomogeneous medium have been investigated [2-4]. Solutions obtained with 
the SKN method are very accurate and certainly superior to P1 and differential or 
modified differential approximations. It has been also demonstrated that in two-
dimensional geometries the SKN method is a high order approximation which 
contains no ray effect [4]. Solving second order elliptic differential equations 
with simple boundary conditions lead to less computational efforts and cpu time.  

In this study, the SKN method with Gauss quadrature set has been applied to 
radiative transfer in two-dimensional cylindrical participating homogeneous 
medium. The accuracy and convergence of the method are investigated. 

2 Derivations of SKN equations 

The SKN equations for two-dimensional cylindrical medium can written as [9] 
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where ( , )r zτ τ  are the optical coordinates, ( , )n r zG τ τ is a function representing 
the nth component of the synthetic kernel function, ( , )r zS τ τ  is the isotropic 
source function for a cold medium and is defined as 
 
                                   ( , ) ( , )r z r zS Gτ τ ω τ τ=                                               (2) 

 
and ω  is the scattering albedo. The incident radiation and heat flux can be 
defined as 
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where ( , )n nwµ are the Gauss quadratures for (0,1)µ ∈ , ( , )n r zτ τq  is a vector 

function defined as 2( , ) ( , )n r z n n r zGτ τ µ τ τ= − ∇q  [4], 1( , )r zF τ τ  and 2 ( , )r zτ τF  
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are the force functions containing physical boundary conditions (BCs). Then the 
net heat flux components can be also be expressed as 
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The SKN equations are subject to the following mathematical BCs regardless of 
the physical BCs: 
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where 0 ( )K x  and 1( )K x  are zeroth and first order modified Bessel functions.  
These BCs are adapted from the exact boundary conditions of the one-
dimensional SKN derivations. 

The source term of the SKN equations is given by Eq. (2). If the medium is 
pure absorber, Eq. (1) yields zero solution for nG . Then the RITE is no longer an 
integral equation and the solutions for the incident energy and the net radiative 
heat flux; respectively, are simply 1( , )r zF τ τ  and 2 ( , )r zτ τF  which are the exact 
solutions. As the scattering albedo increases, source coupling becomes stronger. 
If an iterative scheme is used in the numerical solution of the SKN equations, 
computation time for pure scattering cases is the highest. Previous studies 
revealed that the errors in the SKN method are also the highest for the pure 
scattering medium [2–4]. 

3 Results and discussions 

In order to test the applicability and the accuracy of the SKN approximation, we 
have adapted the following benchmark problems [9]: 

Benchmark Problem 1 (BP-1): A Short cylindrical medium with large optical 
radius, aspect ratios of 10 to 20, can be considered as a plane parallel geometry. 
The medium is homogeneous, cold and pure scattering ( 1ω = ). The 
two-dimensional, solid cylinder solutions of SKN method for a combination of 
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optical radius of 0.2 to 25 mean free path (mfp) and height of 0.002 to 5 mfp are 
compared with the plane parallel geometry solutions of Crosbie and Viskanta [5] 
for the incident energy at the top and the incident energy and the net radiative 
heat flux at bottom. 

Benchmark Problem 2 (BP-2): Long cylindrical geometry with small aspect 
rations for a cold medium with scattering albedos of ω = 0.3, 0.5 and 0.9 are 
considered. The two dimensional cylindrical SKN solutions for the incident 
energy at the center and the incident energy and the net radiative heat flux at the 
surface are compared with the one-dimensional cylindrical RITE solutions [6]. 

Benchmark Problem 3 (BP-3): Radiative transfer in a two-dimensional 
cylindrical medium (Figure 1) which is subject to collimated unit irradiation on 
top surface was considered [7]. The other surfaces are cold and transparent. The 
medium is also cold, homogeneous with pure isotropic scattering ( 1ω = ). The 
incident energy and net radiative heat flux solutions using SKN approximation are 
compared with those of Wu and Wu [7] and Hsu et al. [8]. 

For BP-3, the surface integrals of the incident energy and the net radiative 
heat flux in the RITE yield [7]: 
 
                                           1( , ) exp( )r z zF τ τ τ= −                                              (11) 
 

                                           2 ( , ) 0r r zF τ τ =                                                (12) 
 
                                           2 ( , ) exp( )z r z zF τ τ τ= −                                           (13) 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1: The geometry and the coordinate system. 

This study was carried out on a Pentium III 800 MHz processor with 512 Mb 
RAM. Computation time with SK1, SK2 and SK3 approximations naturally 
increase with the order of approximation since the number of differential 
equations to be solved are also increased. 

In Table 1, the effects of grid refinement and CPU time on numerical   
calculations are depicted. It is clear that as the scattering albedo is increased for a 
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fixed grid size and the same order of approximation, cpu time increases due to 
strong coupling in the SKN equations which requires more iterations for 
convergence. However, SKN equations can be solved directly using a block 
tri-diagonal solver in which case the CPU time remains nearly the same. Several 
cases of grid combinations were considered to ensure grid independence of the 
presented solutions within four significant digits. The grid structure was 
increased with the optical dimensions such as using r zM M× =50×100, 

r zM M× =100×200 and r zM M× =200×200 for cylinders with R=0.125 and 
L=0.25 mfp, R=0.5 and L=1.0 mfp, and R=2.0 and L=4.0 mfp, respectively. 

Table 1:  The effect of cpu time and grid refinement for cylinder of 
R=0.125 mfp and L=0.25 mfp. 

0.5ω =  1.0ω =  
SK1 SK2 SK3 SK1 SK2 SK3

 
r zM M×

 CPU (sec) CPU (sec) 
10×10 0.016 0.034 0.062 0.189 0.262 0.412 
10×20 0.184 0.635 0.671 0.283 0.431 0.876 
25×50 1.414 2.765 4.215 2.084 4.814 8.0 
50×50 4.75 9.69 31.85 9.26 20.98 39.12 
50×100 33.7 72.5 149.3 68.6 173.9 432.0 

Table 2:  Comparisons of the solutions for BP-1. 

=1.0 Exact (Ref. [5]) SK2 SK3 

R L (0)G  ( )G L  ( )q L  (0,0)G (0, )G L (0, )q L (0,0)G (0, )G L  (0, )q L

0.2 0.002 20 1.0452 1.0253 0.9901 1.0284 1.0085 0.9907 1.0343 1.0145 0.9907 

2 0.2 20 1.2645 1.0742 0.9087 1.2499 1.0637 0.9089 1.2669 1.0783 0.9089 

5 0.5 20 1.4968 1.0538 0.7975 1.5021 1.0659 0.7974 1.5008 1.0572 0.7976 

5 1 10 1.7574 0.9661 0.6587 1.7672 0.9757 0.6586 1.7569 0.9634 0.6594 

10 2 10 2.0706 0.7807 0.4825 2.0776 0.7790 0.4829 2.0721 0.7806 0.4834 

12 2.5 10 2.1729 0.7028 0.4240 2.1791 0.7002 0.4249 2.1756 0.7033 0.4252 

25 5.0 10 2.4552 0.4504 0.2613 2.4645 0.4505 0.2654 2.4673 0.4516 0.2652 
 

 
In Table 2, the relative errors of G(0,0), G(0,L) and q(0,L) for BP-1 are 

compared with the exact plane parallel solutions [5]. The agreement of the exact 
and the SKN solutions, with increasing orders, is excellent. For example, the SK3 
solutions for pure scattering medium (γ=20 and L=0.5 mfp) yield relative errors 
of –0.26%, –0.32% and –0.01% for G(0,0), G(0,L) and q(0,L), respectively. The 
errors for the same cylinder are 0.07%, 0.10% and 0.03% in—though not given 
in Table 2—Wu and Wu [7]’s study. For γ=10 and L=1 mfp, the errors for 
G(0,0), G(0,L) and q(0,L)are 0.03%, 0.27% and –0.12%, respectively, when 
using  SK3 approximation. In Wu and Wu [7]’s study, the errors are found to be 
0.28%, 0.52% and 0.23%, respectively. In other cylinder configurations, the 
errors when using the SK3 approximation have the same order of magnitude. 
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Comparisons of the exact solutions [6], of BP-2 with the SKN solutions are 
given in Table 3 for various scattering albedos. For a medium with ω=0.9 and 
R=0.5 mfp, the relative errors of G(0), G(R) and q(R) with SK3 approximation 
are found to be –0.99%, 0% and –0.63%, respectively.  For the same scattering 
albedo and R=1.0 mfp, the errors yield 0.50%, 0.02% and 
–0.67% and for R=2.5 mfp, –0.15%, –0.19% and –1.77% for G(0), G(R) and 
q(R), respectively. The SK2 solutions are in excellent agreement yielding 2 to 3 
significant digit accuracies, however, as the medium becomes strongly 
scattering, higher order, such as SK3 approximation, becomes necessary. 

Table 3:  Comparisons of the solutions for Benchmark Problem 2. 

R=0.5 L=5   
 
ω  (0) / 4G π ( ) / 4G R π ( )q R− (0) / 4G π ( ) / 4G R π ( )q R− (0) / 4G π ( ) / 4G R π ( )q R−
0.3 0.6011 0.7891 1.4890 0.6059 0.7891 1.4886 0.6026 0.7889 1.4900 
0.5 0.6828 0.8348 1.1707 0.6917 0.8352 1.1704 0.6858 0.8346 1.1723 
0.9 0.9183 0.9588 0.2939 0.9388 0.9609 0.2947 0.9274 0.9589 0.2957 

R=1.0  L=5        
0.3 0.3644 0.6944 2.1647 0.3658 0.6937 2.1666 0.3636 0.6943 2.1660 
0.5 0.4571 0.7475 1.8014 0.4608 0.7465 1.8054 0.4554 0.7474 1.8036 
0.9 0.8247 0.9249 0.5453 0.8440 0.9246 0.5523 0.8205 0.9247 0.5490 

0.3 0.0811 0.6030 2.7308 0.0807 0.6028 2.7370 0.0812 0.6035 2.7384 
0.5 0.1266 0.6510 2.4317 0.1254 0.6507 2.4421 0.1268 0.6518 2.4439 
0.9 0.5298 0.8548 1.0522 0.5238 0.8547 1.0713 0.5306 0.8565 1.0709 

 

In Figure 2, the radial distribution of the incident radiation at the top and 
bottom surfaces of BP-3 are given comparatively with those of Refs [7] and [8] 
for cylinder with optical dimensions of R=0.125 and L=0.25 mfp. The maximum 
relative errors with SK3 approximation on the top surface are -3.06% and –1.87% 
in comparison to the solutions of [7] and [8], respectively. On the other hand, 
these errors with SK3 approximation on the bottom surface are –2.4% and   –
2.1% in comparison to the solutions of [7] and [8], respectively. 

In Figure 3, the axial distribution of the incident radiation at the center and 
outer surface are depicted comparatively with those of [7] and [8] for cylinder 
with optical dimensions of R=0.125 and L=0.25 mfp. The maximum relative 
errors with SK3 approximation at the centerline are –2.4% and –2.06% in 
comparison to the solutions of [7] and [8], respectively; whereas, these errors for 
the outer surface are –2.32% and –1.92%. 

In Figure 4, the radial distributions of the incident radiation at the top and   
bottom surfaces are comparatively presented with those of [7] and [8] for 
cylinder with optical dimensions of R=0.5 and L=1.0 mfp. The maximum 
relative errors with SK3 approximation on the top surface are –5.36% and –
3.96% in comparison to [7] and [8] solutions, respectively; while the maximum 
errors with SK3 approximation on the bottom surface are –8.5% and –3.9% when 
compared to those of [7] and [8] solutions, respectively. 
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Figure 2: Radial distribution of the incident radiation at the top and bottom 

surfaces for cylinder with optical dimensions of R=0.125 mfp and 
L=0.25 mfp. 

 
 
 
 
 
           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Axial distribution of the incident radiation at the center and outer 

surface for cylinder with optical dimensions of R=0.125 mfp and 
L=0.25 mfp. 
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Figure 4: Radial distribution of the incident radiation at the top and bottom 
Surfaces cylinder with optical dimensions of R=0.5 mfp and 
L=1 mfp. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Axial distribution of the incident radiation at the center and outer 

surface for cylinder with optical dimensions of R=0.5 mfp and 
L=1 mfp. 
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In Figure 5, the axial distribution of the incident radiation at the center and 
outer surface using SK3 approximation are shown comparatively with those of   
[7] and [8] for cylinder with R=0.5 and L=1.0 mfp. The maximum relative errors 
with SK3 are –5.4% and –3.97% at the center and –4.3% and –3.0% at the outer 
surface with respect to the solutions of [7] and [8], respectively.  

In Figure 6, the radial distributions of the incident radiation using SK3       
approximation at the top and bottom surfaces are comparatively depicted with 
those of [7] and [8] for R=2 and L=4 mfp cylinder. The maximum relative errors 
of SK3 approximation on the top surface are –3.03% and 3.14% in comparison to 
the solutions of [7] and [8], respectively. On the other hand, the maximum errors 
with SK3 approximation on the bottom surface are –8.5% and 8.5% with respect 
to those of [7] and [8], respectively. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Radial distribution of the incident radiation at the top and bottom 
surfaces for cylinder with optical dimensions of R=2 mfp and 
L=4 mfp. 

In Figure 7, the axial distribution of the incident radiation using SK3 
approximation at the center and outer surface are depicted comparatively with 
those of [7] and [8] for cylinder with R=2 and L=4 mfp. The maximum relative 
errors with SK3 approximation at the centerline are –3.03% and 3.14% in 
comparison to the solutions of [7] and [8] respectively; whereas, these errors for 
the outer surface are –4.31% and 0.83%, respectively. 
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Figure 7: Axial distribution of the incident radiation at the center and outer 
surface for cylinder with optical dimensions of R=2 mfp and 
L=4 mfp. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Radial distribution of the radiative heat flux at the top and bottom 
surfaces for cylinder with optical dimensions of R=2 mfp and 
L=4 mfp. 
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The incoming and/or outgoing radiative heat fluxes using SK3 also compare 
well within several percent errors, generally yielding underestimated values, with 
the referred studies. To illustrate the behavior of the radiative heat fluxes, we 
considered the distribution of cylinder with optical dimensions of R=2 and L=4 
mfp. In Figure 8, the radial distribution of the outgoing radiative heat flux using 
SK3 approximation at the top and bottom surfaces are comparatively depicted 
with those of [7] and [8]. Solutions at the top and bottom surfaces from Wu and 
Wu [7] and Hsu et al. [8] almost coincide, and thus two the lines are not 
distinguishable. The maximum relative errors with SK3 approximation on the 
bottom surface are –1.92% and –1.87% in comparison to those of [7] and [8]], 
respectively, while these relative errors are –3.21 and –3.98%, respectively. 

4 Conclusions 

The SKN approximation solutions for various two-dimensional homogeneous 
cylindrical mediums with isotropic scattering are compared with the solutions 
available in the literature. This study concludes the following: (i) the method is 
very accurate yielding 2-3 significant accurate solutions for mostly absorbing 
medium while the highest errors occur in pure scattering medium, (ii) the SKN 
equations can be numerically solved very easily with no numerical complexities, 
(iii) the approximation requires much less then computational effort when 
compared to the cpu time requirements of the exact RITE of the same grid 
configuration, (iv) the approximation can be improved especially at low orders 
by the selection of the synthetic kernel quadratures, (v) the method for moderate 
aspect ratios yield relative errors of several percent for pure scattering medium; 
however, medium with some absorption yield less errors, (vi) the method is free 
of “ray effect”. 
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