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Abstract 

An innovative and robust algorithm capable of solving a variety of complex fluid 
dynamics problems is developed. This so-called, Integro-Differential Scheme 
(IDS) is designed to overcome known limitations of well-established schemes. 
The IDS implements a smart approach in transforming 3-D computational 
flowfields of fluid dynamic problems into their 2-D counterparts, while 
preserving their physical attributes. The strength of IDS rests on the 
implementation of the mean value theorem to the integral form of the 
conservation laws. This process transforms the integral equations into a finite 
difference scheme that lends itself to efficient numerical implementation. 
Preliminary solutions generated by IDS demonstrated its accuracy in terms of its 
ability to capture complex flowfield behaviours. In this paper, the results 
obtained from the application of the IDS to two problems; namely, the 
hypersonic flat plate problem, and the shock/boundary layer interaction problem, 
are documented and discussed. In both cases, the results showed very good 
agreement with the physical expectation of these problems. In an effort to this 
new algorithm, IDS solution to the shock/boundary layer interaction problem 
was compared to the experimental findings described in NASA Mem., No., 2-18-
59W, March, 1959. The results obtained by IDS show excellent agreement with 
the experimental data. 
Keywords: Integro-Differential Scheme, mean value theorem, hypersonic 
boundary layer, finite volume, control volume, numerical scheme. 
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1 Introduction 

The Navier-Stokes equations governing fluid flows can either be highly elliptic 
or highly hyperbolic, or both, depending on the applicable boundary conditions. 
As a result, the Navier-Stokes equations are very complicated and, in general, do 
not lend themselves to analytic solutions. In addition, aerospace designers are 
currently demanding solutions to fluid flow problems under conditions that 
cannot be duplicated with existing experimental facilities. Hence, the only way 
to obtain reasonable, complete information on fluid flows and their 
characteristics lies in computational fluid dynamic (CFD) methods.  A literature 
survey indicated that there are many well-established numerical schemes 
available to aerospace designers. Anderson [1] and Chung [2] presented a wide 
variety of these schemes in their books. Akwaboa [3] used MacCormack 
technique to solve the supersonic flow over a rearward-facing step problem.  
Chang et al. [4], Zhang et al. [5] and Changh [6] introduced different versions of 
the space-time conservation element and solution element method for solving 
fluid flow problems. Even though, these schemes have led to significant 
improvements in the state of the art in CFD, they have many drawbacks, and 
therefore still not adequate to handle certain CFD demands. 

1.1 Research objective 

This research focuses on the development of a robust, efficient, and accurate 
numerical framework that is capable of solving complex fluid flow problems, 
and one that is capable of overcoming most of the limitations generated by 
existing schemes. The proposed scheme is based on a clever approach to the 
merging of the traditional finite volume and the finite difference schemes. In the 
process of creating a new numerical scheme, the mean value theorem is used to 
evaluate the rates of change of fluxes at the center of the control volume. 

2 The governing equations 

When defining any numerical solution to a fluid dynamic problem, the 
conservation laws must be satisfied for an appropriate set of boundary 
conditions. As known in fluid dynamics, the conservation laws can be applied in 
two basic forms; the differential form and the integral form. However, 
experience has shown that when the integral form of the conservation laws is 
applied to fluid dynamics problems, high fidelity numerical solutions can be 
obtained. It is therefore no surprise that the Integro-Differential Scheme (IDS) is 
based on the integral formulation of the conservation laws described in sub-
sections 2.2, 2.2 and 2.3.  

2.1 Conservation of mass equation 

Consider the conservation of mass equation in the following form, 
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∫∫∫ ∫∫ =+
∂
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v s
sdVdv

t
0ρρ .                                    (1) 

 

In eqn (1) tv,,ρ , represent density, volume, and time, respectively. The 
symbols, sd  and V , represent the surface of the control volume and the fluid 
velocity, respectively. These quantities are defined through the use of the 
following vectors: 
 

kdxdyjdxdzidydzsd ++=                                 (2) 
and 

kwjviuV ++= .                                      (3) 

2.2 Conservation of momentum equation 

Consider the conservation of momentum equation in the following form, 

( ) sdsPdVsdVdvV
t Sssv

∫∫∫∫∫∫∫∫∫ +−=+
∂
∂ τρρ ˆ.   (4) 

where the symbol, P, represents pressure and the symbol, ,τ̂  is the tensor that 
defines the various components of the local viscous stresses. This tensor can be 
described by the following equation: 
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and the symbols, zyzxyxyyxyxx ττττττ ,,,,, and zzτ , are the local shear stress 
components. 

2.3 Conservation of energy equation 

Consider the conservation of energy equation in the following form, 
 

∫∫∫∫∫∫∫∫∫∫∫ ++−=+
∂
∂

ssssv

sdqsdVsdVPsdVEEdv
t

.ˆ.. τρρ   (6) 

where the symbol, E, represents the total energy per unit mass of fluid. The 
vector, q , represents the rate of heat conducted per unit area through the surface 
of the control volume. In general, the vector, q , can be written in Cartesian 
coordinate format, such that  

kqjqiqq zyxvis ++=                                          (7) 

where ,, yx qq and zq  represent the rate of heat conducted per unit area in x ,y, 
and z coordinate directions, respectively. 
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3 The Integro-Differential Scheme 

The Integro-Differential Scheme (IDS) combines two schemes; namely, the 
finite volume scheme and finite difference scheme. IDS relies on the coupled 
behavior of discretized cells and their corresponding nodes. The numerical 
process is conducted in two alternating fashions, and for the sake of simplicity, 
only the two-dimension form of the IDS is explained in this paper. A typical 
control volume, illustrated in Figure 1, describes the numerical details associated 
with the finite volume formulation. Similarly, numerical details associated with 
the finite difference formulation are described through the use of Figure 2.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Finite volume model. Figure 2: Finite difference model. 

     Moreover, as illustrated in Figure 2, the center of any four neighboring 
control volumes, namely, control volumes; a, b, c, and d, is defined by the 
indices i and j. Any control volume will be defined locally by the nodes (1, 2, 3, 
and 4) as shown in Figure 1, and globally by its relative location to the point i,j 
as in Figure 2. 

3.1 Application of the conservation laws to the control volume  

To demonstrate the utility of this numerical approach to fluid dynamic problems, 
consider a typical flow through the surfaces of an infinitesimal control volume, 
as illustrated in Figure 1.  Even though the IDS has the potential to solve any 2D 
or 3D fluid-flow problem, for the purpose of simplicity, the discussions 
conducted in this paper are limited to 2D fluid flow problems. However, when 
describing the 2D approach, a major challenge involves the conversion of the 
naturally 3D conservation laws into their 2D counterparts that maintain the 
integrity of the 3D flowfield and its associated effects. To achieve this goal, the 
control volumes are chosen as infinitesimal rectangular prisms, with unit normal, 
ñ, in the x, y, and z directions. Also it was assumed that, the dimension, dz, of a 
typical control volume is always a single unit. These assumptions led to the fact 
that the fluid properties in the z-direction across any control volume are 
constants and the net flow of mass, momentum, and energy in the z-direction is 
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always zero. Armed with these assumptions, the algebraic forms of the rate of 
change of mass, momentum, and energy at the center of each control volume are 
formulated as follows: 
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The non-dimensional total energy, E, is  
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3.2  Flowfield Construction 

A careful examination of the governing eqns (8) – (11), indicates that the system 
is closed relative to four unknown variables, namely ,,, vuρ  and .T  These 
unknowns are included in a solution vector, mU , such that 
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Using Taylor’s expansion, the solution can be constructed based of the following 
time marching scheme: 

t
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3.3 IDS Marching Steps 

Eqn (14) represents a typical explicit time marching scheme. Like most 
established numerical schemes the IDS uses eqn (14). However, the major 
differences in the IDS as compared to the so-called established explicit schemes, 
is the way it handles the right side of eqn (14), namely, the old values of the 
solution flux vector, t

jimU ,)( , the time derivative vector, ( ) ,
,

m
ji

dtdU and the 

time step, t∆ . 

3.3.1 Evaluation of the time derivative 
The evaluation of the time derivatives, ( ) ,

,

m
ji

dtdU , is accomplished through the 

use of the mass, momentum, and energy equations. Eqns (8) – (11) are 
implemented globally to obtain the time derivative ( ) ,

,

m
ji

dtdU  at the center of 

each cell, a, b, c, and d. In another consistence averaging process, the time 
derivative at node, (i,j), is obtained as an arithmetic average of the time 
derivatives at the cell centers. 
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3.3.2 Evaluation of the solution vector 
As indicated in Figure 3, information at the point of interest, (i, j), is updated 
solely based on the values of the point in question along with all its eight 
immediate neighbors. All required fluxes and derivatives are evaluated based on 
arithmetic averages of the primitive variables. 
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Figure 3: Illustration of the IDS stencil. 

3.3.3 Evaluation of the time increment 
Since the IDS is an explicit scheme, the time increment, t∆ , is subject to a 
stability criterion. To determine the size of the time step, the Courant-Friedrichs-
Lewy (CFL) criterion, documented in Anderson [1], is used. 

4 Results and discussions 

In this paper, the IDS is employed to solve two problems; namely, the 
hypersonic flat plate problem, and the shock/boundary layer interaction problem. 
 

 

Figure 4: Grid independence studies. 

4.1 The supersonic flow over a flat plate problem 

The hypersonic flow over a flat plate is a classical fluid dynamics problem, and 
in the past it has received considerable attention [1, 3, 7]. However, it has no 
exact analytical solution. The IDS solver was used to solve the flat plate problem 
under a variety of conditions, ranging from incompressible to compressible to 
hypersonic.  The results provided in this study are for a Reynolds Number, 
Re = 1000, and a Mach number of 4.0. The results of validation studies 
conducted, using grid densities and residual errors are indicated in Figures 4 and 
5. Grid studies were conducted over the following grid sizes; namely, 101x101, 
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151x151, and 201x201. Convergence studies were conducted on a Dell, Intel 
based PC until residual errors were in the range of 10-14 – 10-15. The plot in 
Figures 5 indicates the horizontal velocity profile obtained from the grid density 
studies. In Figure 6, the maximum residual obtained from the mass, momentum, 
and the energy fluxes is plotted as a function of the time step. To further 
strengthen the validity of the algorithm, the reference temperature method was 
used to evaluate the skin friction coefficient, Cf , and the wall heat transfer 
coefficient, and Stanton number, Ch (Rasmussen [8]). Data obtained from these 
studies were also positive.  

 

 

Figure 5: Residual error studies. 

 

Figure 6: Illustration of the shock boundary-layer interaction problem. 
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Figure 7: Illustration of IDS obtained y-velocity component distribution. 

 
Figure 8: Pressure distribution along the wall. 

 

4.2 The shock/boundary layer interaction problem 

In 1959, Hakkinen et al. [9] studied the shock wave/boundary layer interaction 
problem experimentally. This problem is illustrated in Figure 6. More recently, 
due to the massive increase in computer capabilities, studies, [10, 11, 12], 
investigated this problem numerically. Using the IDS Solver, the inlet, outlet, 
and far field boundary conditions were set to be same as those of the flat plate 
problem. However, the flow on the top boundary is specified to form an oblique 
shock impinging on the wall. The bottom boundary consists of freestream and 
solid wall boundaries, whose lengths are 0.2 and 0.8 respectively. The flow 
Reynolds was set to 296000 and the Mach number set to 2.0. Figure 7 illustrates 
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the carpet plot of the y-velocity component obtained from this study. Figures 8 
and 9 compare the pressure and the friction coefficient along the solid wall with 
the experimental data obtained by Hakkinen et al. [9]. The present results are in 
good agreement with the experimental data. 
 

 

 

Figure 9: Skin friction distribution along the wall. 

5 Conclusion 

A new numerical scheme for solving equations that govern fluid dynamics 
problems was developed. This innovative scheme is called the ‘integro-
differential scheme’ and abbreviated as IDS. The scheme name depicts exactly 
what it says, by combining the integral form of the conservation laws to 
formulate the governing equations and transforming them in a suitable 
differential form for appropriate finite difference representation. The concept of 
the control volume was considered when calculating the integrations and the 
finite difference held for the numerical implementation of the scheme. In this 
paper the new scheme is employed to solve the viscous flow over a flat plate 
problem and the shock/boundary layer interaction problem. In both cases, the 
results showed very good agreement with the physical expectation of the flow, 
the empirical formulas, and the experimental data. This agreement solidified the 
belief that the scheme is robust, efficient, and capable of solving a variety of 
complex fluid dynamics problems. 
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