
SIMPLIFIED IMPACT ANALYSIS IN FENICS USING
HERTZ CONTACT LAW
JAROSLAV SCHMIDT & TOMÁŠ JANDA
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ABSTRACT
The interaction of two bodies during and after impact results in complex behavior. Modelling such
behaviour can be simplified by introducing a closed-form law, e.g. the Hertz law for frictionless contact.
Such a model significantly reduces implementation challenges because the kinematic constraint of
impenetrability is replaced by nonlinear force. This paper investigates such impact models focusing
mainly on implementation details in the nowadays popular finite element solver FEniCS. This solver
provides a high level of abstraction for PDEs description and solution techniques. The process of matrix
assembling and localization is automated by the solver. The contribution shows usability of the FEniCS
for Hertz law implementation and investigates the influence of the boundary conditions. Although the
contribution focuses mostly on implementation details, example models correspond to real problem of
glass plates subjected to low-velocity impact and are validated by experimentally obtained results.
Keywords: Hertz law, impact, FEniCS.

1 INTRODUCTION
The contribution partially follows objectives of Czech Science Foundation grant No. 19-
15326S, which is focused on design and advanced modeling of forced-entry and bullet
resistant glass structures under low velocity impact. Glass is fragile material suffering from
progressive collapse. Laminated glass was invented to overcome this difficulties. It consist
of several glass plates binded together by thin viscous interlayers. The invention of this
composite has spread out in the automotive industry as material for windshields. Later civil
engineering starts using laminated glass for structural elements, e.g. stairs, railings, awnings
or facade parts. All these elements are required to withstand loading configurations including,
e.g., seismic events, extreme winds and other climatic or fire exposures, impacts of hard or
soft elements, or blast loads. Hence the pre- and post-breakage behavior of laminated glass
must be investigated to safely design elements dimensions. More information about laminated
glass behavior and glass structure design can be found in [1].

Impact is complicated mechanical process generally involving the chaos theory.
Fortunately, from the engineering point of view, the impact between two bodies can be
described by simplified constitutive relationship. It leads to the idea of introducing a non-
linear force between bodies. Example of such constitutive equation is the Hertz law [2], which
is used in this study.

Nowadays phase-field damage models [3] are popular for brittle fracture modeling due
to their easy-to-implement formulation without extra ad-hoc criteria. Governing equations
can be solved using common finite element method (FEM), such as library FEniCS [4]
with python interface. In this paper, we therefore investigate implementation of Hertz law in
FEniCS library for solid glass without damage which serves as preparation for future phase-
field implementation for laminated glass.

2 FORMULATION
The FEniCS library is open-source platform for solving set of partial differential equations
(PDEs), which provides abstract python interface. The main input for calculation is the
weak form of governing equations supplemented by relevant boundary conditions. For this
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reason, we recall the basic linear elasticity in both, weak (integral) and strong (differential)
form. The following equations are well-known continuum mechanics relationships, recall for
example [5].

Response of elastic body Ω with boundary ∂Ω = Γ = Γf ∪ Γu is described by vector
displacement field u(t) which at each time instant fulfils the equilibrium condition

divσ + b = ρü in Ω (1)

supplemented by boundary conditions

u = ū on Γu, (2)

σ · n = f̄ on Γf , (3)

where σ(u) is Cauchy stress tensor, b is body force, ρ is density, ū is prescribed Dirichlet
displacement field on boundary Γu, f̄ is prescribed Neumann force on boundary Γf and n is
outward unit normal. Constitutive relationship is given by Hooke’s law using Lame’s constant
λ and µ as

σ(u) = λdiv(u)I + 2µε, (4)

where I is unit tensor and finally ε is linearized strain

ε =
1

2

(
∇u + (∇u)>

)
. (5)

However, strong form requires excessive regularity of solution. Somehow more natural is
to formulate the problem integrally in the weak form. This form is obtained by multiplying
strong form by test function. After integration over domain and applying divergence theorem
we get the weak form. It states: find u(t) which satisfy Dirichlet boundary conditions such
that ∫

Ω

σ : δεdV +

∫
Ω

ρü · δudV =

∫
Ω

b · δudV +

∫
Γf

f · δudS (6)

for all δu vanishing on boundary Γu.
This equation governs the response of elastic impacted body. Besides we must also

describe position of the rigid-body impactor denoted as u0(t). Its motion is modeled by one
degree of freedom [6] with mass m0, therefore it must satisfy scalar equation of motion

m0ü0 = Fc(u0 − uhit), (7)

where uhit is scalar value of plate displacement at the point of impact in direction of impactor
movement u0. Force Fc is nonlinear force given by Hertz law

Fc(α) = k0〈α〉3/2, (8)

where k0 is contact stiffness and 〈α〉 is positive part of α, symbolically

〈α〉 =
|α|+ α

2
. (9)

The same force Fc(u0 − uhit) with opposite direction acts on elastic body as nonlinear
contribution in surface force f . This forces bind together response of elastic medium with
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one-DoF impactor. Without loss of generality we assume that no other surface forces are
prescribed and b = 0.

Spatial discretization of (6) is provided by finite element method through FEniCS [4].
Distribution of displacement function u is approximated by selected base functions defined
on small compact subsets of Ω. After spatial integration, discretized version of equilibrium
equations is obtained as matrix equation[

M 0
0 m0

] [
ü(t)
ü0(t)

]
+

[
K 0
0 0

] [
u(t)
u0(t)

]
=

[
−aFc(u0 − uhit)
Fc(u0 − uhit)

]
, (10)

where K and M are stiffness and mass matrices of elastic body and a is localization vector
which distributes nonlinear Hertz force to corresponding nodes. Matrix eqn (10) represents
the set of nonlinear equations. Nonlinearity arises due to force Fc and positive-part operator.
Above that this force is not continuously differentiable. It can bring numerical difficulties
when smooth Newton method is used. Nevertheless this discrepancy is negligible in most
of engineering problems with sufficiently small time step. In our cases, no such numerical
difficulties appeared.

The FEniCS library may be advantageously used for solving eqn (10). Individual integrals
from (6) are stated using the FEniCS’ Unified Form Language (UFL) in python environment
and localization and assembling process is performed by library itself. This brings a higher
level of abstraction above the problem under consideration.

Extension of model can be simply implemented by modifying the weak form. For
example, flexible supporting of edges at the part of boundary Γk is implemented by adding
following member to weak form ∫

Γk

k (u− ū) · δudS. (11)

This is the same as enforcing the Dirichlet boundary conditions by penalties, with the
difference that now we do not select the parameter k as large as possible, but k has the
physical meaning of the stiffness of the support. In some experiments, the impacted plate is
put on a flexible pad without additional anchoring. Plate is supported only in one direction
in this case, whereas movement in other direction is allowed. It corresponds with the weak
contribution ∫

Γk

k〈u− ū〉 · δudS. (12)

Recall that 〈x〉 is positive part operator, which is applied element-wise on vector argument.
Similarly the damping of boundary conditions can be added to model. Viscous damping is

dissipative phenomena without variational structure in the meaning, that there is no potential.
Nevertheless the damping can be added directly to weak form as following ad-hoc integral
expression ∫

Γc

cu̇ · δudS, (13)

where c is boundary damping coefficient. It this case the governing matrix equation has
following form[

M 0
0 m0

] [
ü(t)
ü0(t)

]
+

[
C 0
0 0

] [
u̇(t)
u̇0(t)

]
+

[
K 0
0 0

] [
u(t)
u0(t)

]
=

[
−aFc(u0 − uhit)
Fc(u0 − uhit)

]
.

(14)
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Again, the matrix C and its components are assembled by FEniCS library.

3 IMPLEMENTATION
In this section we recall critical parts of implementation. The dimension of matrices (number
of DoFs) is driven by FEniCS through abstract function spaces. As demonstrated by eqn (14)
we need to extend the number of DoFs by one, It can be done in FEniCS as follows

import fenics as fe

V_el = fe.VectorElement("CG", mesh.ufl_cell(), 2)
R_el = fe.FiniteElement("R", mesh.ufl_cell(), 0)
M_el = fe.MixedElement([V_el, R_el])
W = fe.FunctionSpace(mesh, M_el)

The first line create piecewise quadratic function space V . The so called “Real” function
space R, created by the second line of code, represents one-value constant function over
whole mesh. It brings additional global degree of freedom into governing matrices. The
last two lines create mixed function space W = V ×R. Now we can create tuple {u, u0}
of displacement trial function u ∈ V and impactor trial function u0 ∈ R as one object of
abstract spaceW and tuple of test functions {δu, δu0} ∈ W by following commands

u_tr, u_imp_tr = fe.TrialFunctions(W)
u_test, u_imp_test = fe.TestFunctions(W)

If we have trial and test functions, next step is forming of individual weak-form members.
They reads

K_form = fe.inner(sigma(u_tr), eps(u_test))*fe.dx
K_form += k*fe.dot(u_tr, u_test)*ds(1)
M_form = rho*fe.dot(u_tr, u_test)*fe.dx
M_form += rho_imp*fe.dot(u_imp_tr, u_imp_test)*fe.dx
C_form = c0*fe.dot(u_tr, u_test)*ds(2)

where rho imp is impactor weight divided by domain volume.
The main advantage of FEniCS library is abstract approach to FEM modeling. The

individual forms tied to individual matrices are written in python using UFL. Common
operations, such as the dot or the inner product, are implemented simply by calling
corresponding FEniCS functions fe.dot() or fe.inner(). Integration differential ds(1)
represents Γk and ds(2) represents Γc. Other implementation details are beyond the scope
of the paper. Localization and assembling process is performed by function fe.assemble().
Therefore we can obtain individual matrices by

K = fe.assemble(K_form)
M = fe.assemble(M_form)
C = fe.assemble(C_form)

The last ingredient is the localization vector a for nonlinear Hertz law and localization
matrix A = aa> which enters to Jacobi matrix in Newton solver. The former one can be
implemented as

a_loc_vec = fe.Function(V).vector()
p1 = fe.PointSource(V.sub(0).sub(2), impact_point, -1.0)
p2 = fe.PointSource(V.sub(1), impact_point, 1.0)
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p1.apply(a_loc_vec)
p2.apply(a_loc_vec)

where impact point is point of impact implemented through FEniCS object fe.Point() and
object fe.PointSource() serves as the Dirac delta applicator. Physically it corresponds to
application of concentrated force. The implementation of localization matrix A is more
difficult, because the outer product aa> is not provided by FEniCS library (specifically
by PETSc library) because it generally leads to dense matrix. The matrix A is therefore
implemented by creating new PETSc matrix and using method setValues().

ind = numpy.nonzero(numpy.abs(a_loc_vec[:]) > tol_eps)
comm = mesh.mpi_comm()
A_loc = PETSc.Mat()
A_loc.create(comm)
A_loc.setSizes([V.dim(), V.dim()])
A_loc.setType("aij")
A_loc.setUp()
A_loc.setValues(ind, ind, [[1.0, -1.0], [-1.0, 1.0]])
A_loc.assemble()
A_loc = fe.PETScMatrix(A_loc)

Array ind is the tuple of DoF indices, where nonlinear force is applied. It can be obtained
by different way. We employ function nonzero from the numpy library. The rest of the
code creates matrix A ∈ Rn×n, where n = dim(W) and fills four selected components with
values ±1.

In this stage all matrices are assembled and the rest of the code depends on selected solver
and on selected time integrator. This is no longer FEM problem, but a linear algebra problem.
Therefore the concrete solver is not presented here.

4 NUMERICAL RESULTS
This section provides preliminary results for simulating glass plates impacted by external
impactor. Glass is considered as linear isotropic material with Young’s modulus E1 = 70
GPa and Poisson’s ratio ν1 = 0.23 according to standards [1], [7]. The stiffness of the contact
follows from

k0 =
4

3

R1/2

1−ν2
1

E1
+

1−ν2
2

E2

, (15)

where material parameters E2 = 210 GPa and ν2 = 0.3 of impactor was set as elastic steel
material. Additionally, we set the radius of the impactor as R = 0.05 m. Glass density is
ρ = 2500 kg/m3 according to [7] and impactor weight is mimp = 52 kg.

We numerically test the solid glass plate where we prescribed boundary stiffness on the
all faces except upper and lower surface. Response of individual plates are presented here
through evolution of impactor acceleration. The so called soft impact, where weight of plate
is higher order than impactor weight, is plotted in the left part of Fig. 1. The plate have
dimensions 1.5× 1.5× 0.1 m. There is evident minimum influence of support stiffness k.
Different situation is in the right graph in Fig. 1, where evolution of impactor acceleration
for plate with dimensions 1.5× 1.5× 0.04 m is displayed. It is evident that impactor hits the
plate multiple times, but without some obvious pattern. If the boundary stiffness is negligible,
the time of physical contact is small and the bodies bounce off each other with the possibility
of small re-impact. With increasing boundary stiffness the behavior is more chaotic and
impact time or number of impact is highly unpredictable. The same situation can be seen
from Fig. 2. It represents further reduced plate with dimensions 0.5× 0.5× 0.02 m and total
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Figure 1: Evolution of impactor acceleration of glass plate 1.5× 1.5× 0.1 m (left) and
1.5× 1.5× 0.04 m (right) for different values of support stiffness k.
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Figure 2: Evolution of impactor acceleration of glass plate 0.5× 0.5× 0.02 m for different
values of support stiffness k.
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weight 12.5 kg (quarter of impactor weight). For example for zero stiffness there is short
contact of plate and impactor, but if we introduce some stiffness of boundary, the first stage
is the same, but second and even stronger impact appears later in diagram.

5 CONCLUSION
We introduced the implementation of impact analysis of two elastic bodies using the Hertz
contact law. The emphasis was on implementation details in FEniCS finite element library,
which offers abstract interface for solving PDEs. The numerical results show that even with
simplified constitutive Hertz law, the impact is deterministically chaotic. This also applies for
such a simple example as contact of glass plate with steel impactor. This is mainly due to the
similar weights of both bodies and by large stiffnesses of body and impactor.
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