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1Department of Mechanics, CTU in Prague, Czech Republic
2Department of Biomechanics, CTU in Prague, Czech Republic

3Department of Material Engineering, TU of Liberec, Czech Republic

ABSTRACT
The paper is concerned with the prediction of macroscopic nonlinear viscoelastic response of
unidirectional fibrous composites made of basalt and carbon fibers embedded into a polymer matrix.
The objective is to derive macroscopic stress-strain curves as a function of loading rate through finite
element simulations assuming a simple hexagonal arrangement of fibers in the yarn cross-section.
These curves should serve as a benchmark when addressing this issue with much efficient Mori-Tanaka
computational scheme, which in turn opens the way to an efficient fully coupled analysis of the complex
textile geometries at the level of plies, where the Mori-Tanaka method will serve as a local stress updater
at the level of individual yarns. This initial step is supported by an extensive experimental program to
acquire the material parameters of the generalized nonlinear viscoelastic Leonov model describing the
behavior of the polymer matrix.
Keywords: textile composites, viscoelasticity, homogenization, finite element method.

1 INTRODUCTION
Plain weave textile composites made of graphite fiber tows embedded in a light polymer
matrix have been at the forefront of engineering interest already for some decades. Relatively
recently, new types of composites exploiting relatively cheep basalt fibers have emerged as
a potential substitute for more expensive carbon fibers based material systems. Limiting
attention to elasticity while concentrating on various geometrical imperfections, the two
systems were examined in [1]. However, moving beyond elasticity requires addressing the
time dependent response of viscoelastic matrices [2]–[4].

This issue has received much attention particularly in view of various computational
approaches. In this regard, two groups can essentially be identified: (1) detailed numerical
simulations attempting to account for all microstructural details hidden in the formulation
of various statistically equivalent periodic cells (SEPUC) [5] and (2) application of
micromechanical models, e.g. the Mori-Tanaka (MT) method [6], typically enhanced to
overcome to stiff predictions of macroscopic response when exceeding the limits of linear
elasticity [3], [7]–[9].

In most cases, however, attention has been limited to unidirectional fibrous composites.
On the other hand, practical applications call for more complex geometries such as
textiles. Low material symmetry of such composites then makes difficult to formulate a
simple constitutive model on macroscale. Instead, a fully coupled multi-scale analysis is
usually adopted. Most often the FE2 computational scheme [10] is used. This approach,
combining detailed finite element (FEM) simulations at least at two levels, is known to
be computationally very expensive. In this regard, a suitable method of attack is seen in
replacing detailed finite element simulations at the level of yarns by an extremely efficient
Mori-Tanaka micromechanical model. However, the applicability of the Mori-Tanaka method
calls for testing to ensure that it delivers results comparable to FEM predictions.
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This paper serves as a first step in this computational endeavor by offering the
macroscopic stress-strain curves provided by FEM to be compared later with the MT
estimates. To this end, a simple computational model represented by a hexagonal arrangement
of fibers in the yarn cross-section is sufficient. On the contrary, much attention deserves
formulation and calibration of a suitable computational model pertinent to particular material
systems under consideration. In this paper, two types of reinforcements, namely carbon and
basalt fibers, are examined. While these are assumed linearly elastic, the matrix is expected
to undergo time and rate dependent behavior well represented by the generalized Leonov
model [11]. A brief introduction to theoretical bases is given in Section 2. Further details
are available in [3], [9], [12]. An extensive experimental program, the essential part of
this contribution, is described in Section 3. Strain based formulation of the homogenization
problem based on FEM together with the results of numerical simulations is presented next
in Section 4. For further details, the interested reader is referred to [4], [13]. The achieved
results and potential future steps are finally summarized in Section 5.

2 GENERALIZED LEONOV MODEL
We begin with the Eyring flow model for the plastic component of the shear strain rate written
as

dep
dt

=
1

2A
sinh

τ

τ0
, (1)

where A and τ0 are the material parameters to be obtained experimentally. When combined
with the elastic component of the shear strain rate dee/dt it yields the one-dimensional
Leonov constitutive model [11]

de

dt
=

dee
dt

+
dep
dt

=
dee
dt

+
τ

η( dep/dt)
, (2)

where the shear-dependent viscosity η is provided in terms of zero shear viscosity
η0 (viscosity corresponding to a viscoelastic response) and stress shift function aσ as

η( dep/dt) =
η0τ

τ0 sinh(τ/τ0)
= η0aσ(τ), (3)

where τ is the shear stress. Note that eqn (2) represents a simple Maxwell unit. An extension
to a multi-dimensional behavior is simple and grounds on the generalized compressible
Leonov model, equivalent to the generalized Maxwell chain model [12]. The viscosity term
corresponding to the µ-th unit then reads

ηµ = η0,µaσ(τeq). (4)

The equivalent shear stress τeq is provided by

τeq =

√
1

2
sijsij , (5)

where sij stands for the component of the deviatoric stress tensor. This also suggests a linearly
elastic volumetric response thus linking the model with von Mises plasticity. The final list of
constitutive equations within the limit of small strains reads
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σm = Kεv, (6)

ds

dt
=

M∑
µ=1

2QGµ

(
de

dt
− dep,µ

dt

)
, s =

M∑
µ=1

sµ, (7)

sµ = 2Qηµ
dep,µ

dt
= 2Qη0,µaσ(τeq)

dep,µ
dt

, (8)

where σm is the mean stress, εv is the volumetric strain, K is the bulk modulus, Gµ is the
shear modulus of the µ-th unit, and s, e are the deviatoric stress and strain vectors. For general
six-dimensional stress space the operator matrix Q is given by

Q = diag
[
1, 1, 1,

1

2
,

1

2
,

1

2

]
. (9)

Although a fully implicit integration scheme was proposed in [3] to integrate the system
of eqns (6)–(8), we proceed in the footsteps of [9] and exploit a fully explicit scheme
with sufficiently small time step to avoid numerical instabilities. Details on numerical
implementation can be found, e.g. in [13].

3 EXPERIMENT AND MODEL CALIBRATION
The presented experimental program was designed to provide data for the derivation of
material parameters A, τ0 of the Eyring flow model (1), Section 3.1, and parameters of the
Maxwell chain units, the relaxation time θµ and the spring shear modulus Gµ linked to zero
shear viscosity η0,µ = θµGµ, Section 3.2. To validate the calibrated model we compared in
Section 3.3 some of the laboratory tests with numerical simulations.

3.1 Strain rate dependent tensile tests

For large values of parameter A the Eyring flow eqn (1) can be adjusted for the case of
uniaxial tension as [12]

σy = τ0
√

3 ln(2A
√

3) + τ0
√

3 ln ε̇, (10)

where σy is the yield stress, typically associated with the maximum tensile stress attained for
the applied uniaxial strain rate ε̇.

To that end, six dog bone type specimens similar to those in Fig. 1(b) and made of 285/500
“aero” Havel epoxy resin were loaded in simple tension in the displacement controlled
regime at a specific strain rate until failure using the MTS Alliance 30kN electromechanical
testing machine equipment with 30kN load cell. The resulting stress-strain diagrams appear
in Fig. 2(a) confirming the rate dependent response of the epoxy matrix. The corresponding
maximum values of the yield stress σy are also displayed.

The evolution of strain ε was measured using a clip on extensometer with an initial
gauge length of 25 mm tightly mounted on the surface of the tested specimen, Fig. 1(a)
The corresponding stresses were derived by dividing the chamber force by the average
cross-section area obtained from several measurements along the specimen length, see also
Section 3.2.

The Eyring eqn (10) is plotted in Fig. 2(b) as a solid line. It was obtained through a
simple linear regression adopting the six experimental pairs of σy − ε̇, the star points, to

High Performance and Optimum Design of Structures and Materials IV  21

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 196, © 2020 WIT Press



(a) (b)

Figure 1: (a) MTS testing machine; (b) Tested samples.
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Figure 2: (a) Stress-strain curves for selected strain rates; (b) Eyring plot.

yield A = 7.928× 107s and τ0 = 3.3MPa. Point out that unlike τ0, which appears in the
calculation of the shift factor aσ(τ) in eqn (3), the parameter A is essentially not needed in
simulations.

3.2 Stress dependent creep tests

Standard creep tests were carried out to obtain data for the calibration of Maxwell chain
model. The reason for choosing creep tests is the time-stress superposition which allows us
to construct a creep compliance function for a given reference stress from a series of creep
tests performed at various stress levels for a relatively short time.

The creep experiments were performed on the MTS Mini Bionix 858.02 testing system
equipped with 1000N load cell. In the present study, fourteen specimens plotted in Fig. 1(b)
were loaded by a constant force corresponding to the required stress level evident in Fig. 3(a).
The specimen preload was carried out at a constant loading speed of 500Ns−1. The strains
were then recorded for two hours using again the 25mm gauge length extensometer. Each
test, except for tests at 40 and 45MPa, were run twice. As seen in Fig. 3(a), the results at
low stress levels (10–30MPa) are comparable thus supporting the measurement credibility.
The maximum stress level was suggested based on the maximum yield stress observed in the
tensile tests, recall Section 3.1. It is evident that particularly at high stress levels the acquired
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Figure 3: (a) Creep test; (b) Compliance function plotted as a function of adjusted time
t̂; (c) Master curve constructed from experiments; (d) Polynomial fit to selected
approximation points based on experimental Master curve.

measurements were greatly affected by the quality of the specimen, compare the curves for
50 and 60MPa. In addition, for stress levels exceeding 40MPa the tertiary creep can easily
be identified. Exploiting these measurements would thus require a large strain formulation.
Because of that, only the measurements up to 40MPa were adopted in further processing.

Fig. 3(b) plots the creep compliance function derived from measured strains for the
selected set of specimens (numbers in parenthesis). To confirm the time-stress superposition
each curve was plotted as a function of the adjusted time t̂ = aσ(τ)t where t represents the
actual test duration. Clearly, even for stress level of 40MPa only data from a short initial stage
of the test are applicable. This is also evident in Fig. 3 were the master curve was constructed
by shifting the measurements pertinent to individual stress levels using the corresponding
shift factor aσ(τ). To span both longer and shorter times the curve was artificially prolonged
as suggested by points denoted by stars. These were then used to get a smooth polynomial fit
displayed in Fig. 3(d).

This smoothed approximation was employed to calibrate the Dirichlet series expansion
written as

J(t) =
N∑
µ−1

Jµ

[
1− exp

(
− t

τµaσ(t)

)]
, R(t) =

N∑
µ−1

Eµ exp

(
− t

θµaσ(t)

)
, (11)
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where J(t) and R(t) represent the creep compliance and relaxation function, respectively.
First, compliances Jµ were determined by minimizing the least square difference of J(t)
given by eqn (11)1 and experimentally derived master curve for the selected set of retardation
times τµ, see Table 1. The stiffnesses Eµ and relaxation times θµ were obtained subsequently
from (Jµ, τµ) pairs with the help of Laplace transform, see e.g. [13, Appendix C]. The
coefficients Gµ needed in eqn (7) then follow directly from Eµ adopting constant Poisson
ratio ν = 0.39. The results are listed in Table 1.

Table 1: Parameters of Maxwell chain model.

µ τµ [s] Jµ [MPa−1] θµ [s] Eµ [MPa]
1 0.001 2.606512e-04 9.927397e-03 2.787166e+01
2 0.01 1.905071e-06 9.966502e-02 1.278184e+01
3 0.1 8.808431e-07 9.815126e-01 7.056602e+01
4 1 4.934025e-06 9.543319e+00 1.711529e+02
5 10 1.276165e-05 9.344254e+01 2.334448e+02
6 100 1.969419e-05 9.580883e+02 1.418353e+02
7 1000 1.290521e-05 8.275395e+03 5.659977e+02
8 10000 6.291266e-05 9.647045e+04 1.586346e+02
9 100000 7.887707e-06 2.005373e+05 1.944645e+03
10 1000000 1.577867e-03 4.168654e+05 5.096147e+02

3.3 Model validation through virtual laboratory tests

To validate the Maxwell chain model, eqn (11)2, we compared numerical simulations with
experimental results of uniaxial tension discussed in Section 3.1. These comparisons for
the two selected strain rates 8× 10−4 and 8× 10−5s−1 appear in Fig. 4. For both loading
scenarios the fit is reasonable thus supporting the Maxwell chain model to represent the time
dependent response of the present epoxy matrix.
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Figure 4: Comparing experiment and simulation. (a) Strain rate ε̇ = 8× 10−4s−1; (b) Strain
rate ε̇ = 8× 10−5s−1.
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4 HOMOGENIZATION
It has been suggested that fibrous composites with a sufficiently large volume fraction
of fibers can be assumed ergodic, statistically uniform, and thus well represented by an
hexagonal arrangement of circular reinforcements in the yarn cross-section, see Fig. 5. In case
of elasticity this results in a transversely isotropic material. When exceeding this limit, the
SEPUC geometry yields in general an orthotropic response [4]. This is already one particular
issue which cannot be captured with standard formulation of the Mori-Tanaka method.

(b)

(a) (c)

Figure 5: (a) Image of local microstructure of epoxy matrix based carbon fiber reinforced
composite; (b) Periodic hexagonal array (PHA) computational model; (c) Periodic
finite element mesh.

4.1 Theoretical background

For simplicity, we limit our attention to plane-strain formulation of the first-order
homogenization problem and write the increments of local displacement and strain fields
as

∆u(x) = ∆E · x + ∆u∗(x), ∆ε(x) = ∆E + ∆ε∗(x). (12)

Further derivation grounds on the Hill lemma, which for the displacement controlled loading
conditions (the increment of macroscopically uniform strain ∆E is prescribed) becomes〈

δεT∆σ
〉

= 0, (13)

where 〈·〉 stands for volume averaging. The solution to eqn (13) is then searched in terms of
the fluctuation part u∗ of local displacements u. The typical assumption of periodicity of u∗,
the same fluctuation displacements on the opposite sides of SEPUC in Fig. 5(b) and (c), then
ensures that

〈ε(x)〉 = E, because 〈ε∗(x)〉 =
1

2

∫
Γ

(niu
∗
j + nju

∗
i ) dΓ = 0, (14)

where Γ is the boundary of SEPUC and n stores the components of the unit outward normal.
Adopting standard finite element discretization in eqn (13) together with local constitutive
law

∆σ(x) = L(x)(∆ε(x)−∆µ(x)), ∆ε(x) = B(x)∆r, (15)

yields upon localization the linearized system of algebraic equations in the form

K∆r = ∆F + ∆f , (16)
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where

K =
1

Ω

∫
Ω

BT(x)L(x)B(x) dΩ, (17)

∆F = − 1

Ω

∫
Ω

BT(x)L(x)E dΩ, ∆f =
1

Ω

∫
Ω

BT(x)L(x)∆µ(x) dΩ, (18)

where L is the instantaneous local stiffness matrix (the stiffness matrix associated either with
the fiber or the matrix phase), µ is the eigenstrain vector here representing the creep strain
developed in the polymer matrix, B is the standard geometrical matrix, and ∆r stores the
increments of nodal displacements of u∗.

Finally, the macroscopic stress increment ∆Σ follows from volume averaging of local
stresses ∆σ(x), i.e.

∆Σ = 〈∆σ(x)〉. (19)

4.2 Finite element simulations

Two material systems are examined in the present study to address the influence of material
properties of individual phases. The same epoxy resin was considered for both carbon and
basalt fiber composite. The elastic properties of both types of fiber reinforcements were taken
from [1, 14] and are listed in Table 2. Since not essential for the purpose of our present study,
we adopted the same volume fraction for both types of reinforcements extracted from the
image of carbon fiber tow in Fig. 5(a). As for the matrix phase we recall parameters of the
Maxwell chain model in Table 1.

Table 2: Material properties of individual phases.

EA ET GA GT νA cf
[GPa] [GPa] [GPa] [GPa] [-] [-]

Carbon fiber 294 13 12 5 0.24 0.5
Basalt fiber 69.68 64.82 28.10 26.14 0.40 0.5

The clear influence of fiber stiffness on the macroscopic response is evident in Fig. 6.
The curves in Fig. 6(a) were constructed for pure in-plane shear loading represented by
the prescribed shear strain rate Ėxy = 5× 10−5s−1. The results in Fig. 6(b) correspond to
a virtual relaxation test in shear where the macroscopic shear strain Exy = 0.005[-] was
applied almost instantaneously and then held constant for 100s. Apart from macroscopic
curves labeled as “composite” we also show the evolution of stress volume averages in
individual phases. The observed differences are merely attributed to the differences in the
transverse shear modulus where the GT of the basalt fiber is more than 5 times bigger than
the one of the carbon fiber.

To test the influence of the geometry of SEPUC we loaded the composite in transverse
direction by applying in turn the macroscopic strains Exx and Eyy . In particular, the cell was
first preloaded with a strain rate Ė = 10−4s−1 up to the maximum value of E = 0.01[-],
which was then held constant for 100s. The results for both types of material systems appear
in Fig. 7. It is seen that in this particular case the creep effect is negligible, which in turn
shows a negligible influence of the hexagonal arrangement of fibers. A minor difference
appears for the basalt fiber based composite only, where the effect of creep is slightly more
pronounced when compared to the carbon fiber based composite. Consequently, the issue
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Figure 6: (a) Applied shear strain rate Ėxy = 5× 10−5s−1; (b) Shear relaxation test at
Exy = 0.005[-].
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Figure 7: Modeling of transverse tension – macroscopic transverse strains Exx (solid lines)
and Eyy (dashed lines) applied.

of microstructure does not provide any obstacle in substituting the FEM simulation with
the Mori-Tanaka method. Recall that the Mori-Tanaka method would predict, in the case of
transversely isotropic fibers, a transversely isotropic response on macroscale.

5 SUMMARY AND CONCLUSIONS
The paper outlined an application of the generalized compressible Leonov model to predict
the macroscopic response of basalt fiber and carbon fiber made composites.

Attention was accorded mainly to the calibration of the Leonov model describing the
behavior of the polymer matrix made of 285/500 “aero” Havel epoxy resin. Apart from that,
the selected experimental program supported the choice of this particular constitutive model.
The second issue addressed in this paper was the construction of macroscopic stress-strain
curves for various loading conditions.

Because these curves should provide benchmark for the application of the Mori-Tanaka
micromechanical model, we adopted the first-order homogenization theory, as a reliable
tool, combined with FEM simulations performed on a certain representative volume element
(RVE). Herein, a simple periodic unit cell with hexagonal arrangement of fibers was
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employed. As expected, the results show a significant rate and time dependent behavior in
shear, while in transverse tension this effect is less pronounced. This is mainly attributed to
the model formulation corresponding to the von Mises plasticity. Consequently, the influence
of RVE geometry was almost negligible for both types of composites, which may promote
the applicability of the Mori-Tanaka method.

Such step, however, still needs to be supported by sufficiently accurate macroscopic
predictions comparable to those provided by FEM. This would open the way to the modeling
of nonlinear viscoelastic response of complex textile composites in the framework multi-scale
analysis, where the efficient Mori-Tanaka method would serve as a stress updater within the
homogenized, generally anisotropic, yarn. Both issues are under current investigation.
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