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Abstract 

Structures are subject to uncertainty parameters that need to be considered in the 
design process. Reliability Based Design Optimization (RBDO) has become a 
powerful tool in achieving the optimum design when considering uncertainty 
data. In this work RBDO is applied in two different optimization approaches: 
size and topology optimization. There is a wide set of methods to solve RBDO 
problems, among them RIA (Reliability Index Approach), PMA (Performance 
Measure Approach) and SORA (Reliability Optimization and Reliability 
Assessment) are the most common in literature. For this work the SORA method 
has been chosen because it is easy to combine with commercial structural 
analysis and optimization codes due to the uncoupled nature of its formulation. It 
has been programmed in a MatLab code which manages the calls to structural 
analysis and optimization software needed to solve the RBDO problem. Finally, 
three application examples are used to compare the designs obtained with and 
without a probabilistic approach.     
Keywords:  RBDO, reliability index, size optimization, topology optimization, 
probability of failure. 

1 Introduction 

In engineering, some parameters used in the structural design process have an 
important random nature. Thus, load values might not be exactly known or 
material mechanical properties could not correspond to their theoretical values. 
Furthermore, as explained by Melchers [1], construction processes and product 
manufacturing have implicit inaccuracies and sources of error. From this fact, the 
idea is to provide a reliability approach to the structural analysis, in which some 
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variables that traditionally had a fixed value now are considered as random 
variables. First contributions to this approach were made by Cornell [2], and 
since then important advances have been achieved in this field, as introduced in 
Haldar and Mahadevan [3] or Choi et al. [4], among others. Nowadays there are 
a large diversity of methods to perform reliability based structural analysis, and 
there are numerous research articles in this discipline, as Bandi et al. [5] or Chun 
et al. [6]. 
     On the other hand, several structural analysis codes with optimization 
modules have been developed due to the growing importance of structural 
optimization in industry and the increasing computational facilities. Among the 
whole set of commercial packages, Abaqus [7], Optistruct [8], or Genesis [9] 
could be a representative sample of them. These codes are capable of analyzing 
and optimizing complex structural models with a large number of degrees of 
freedom in competitive computational times. 
     Thus, our focus is to use both capabilities: the power of commercial software 
and the efficiency of a decoupled RBDO method (SORA). Subsequently the 
code developed is this work is applied in examples with different approaches: 
size and topology optimization. 

2 Brief description of RBDO 

2.1 General formulation of RBDO problems 

The most common mathematical formulation of RBDO problem is: 
min ( , )F x p                                                   (1.a) 

 subject to: 

           ( , ) 0 ;   1, ...,
i

g i n x p                                       (1.b) 

          ,
( , ) 0    ; 1, ...,

k f k
P G P k m  x p                               (1.c) 

The objective is to minimize the function ( , )F x p , which depends on a 

combination of design variables x and fixed parameters p. This objective 

function must satisfy a number of constraints ( , ) 0
i

g x p  related to the 

structural responses which depend, in the same way as the objective function, on 
vectors x and p. The change in this optimization problem respect from the 
deterministic one is that the optimal structure must also satisfy a number of 
probabilistic constraints. These constraints consist of achieving the probability of 
failure of the structure, which must be lower than an imposed value Pf,k. 
Probability of failure is defined as the probability that the structure does not fulfil 
the required constraints at different limit-states of failure or service. Therefore, 
the probability of failure is always referred to the fulfillment of a limit-state 

function, which is expressed as ( , ) 0
k

G x p . For negative values of G, the 

structure is in a failure region and for positive values of G, the structure is in a 
safe region. 
     The probability of failure can be expressed as: 
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 
( , ) 0

( , ) 0 ... ( , )
GfP P G H dxdp


     x p

x p x p                   (2) 

where ( , )H x p  is the joint probability density function of x and p. The analytical 

solution of this integral is usually quite complex, due to it is difficult to know the 
analytical expression of both ( , )H x p and ( , )G x p . Approximation methods are 

normally used to evaluate (2) based on the performance function approximation 
(linear or higher order) and the use of first and second order moments of the 
random variables distributions. Assuming that the limit-state function is 
normally distributed, the probability of failure can be approximated as described 
by Cornell [2]: 

( )
f

P                                                      (3) 

where   and  are the standard normal probability density function and the 

standard normal cumulative distribution function, respectively.  is known as 

reliability index. 
     Methods used to overcome the solution of problem (1) can be classified in 
three groups, according to Aoues and Chateauneuf [10]: 
- Two level methods, which consider the probabilistic constraints in the 

optimization loop. This implies the need to solve nested loops, an outer loop 
for the optimization process and an inner loop for the reliability analysis. 

- One level methods, which solve the problem in a single loop, avoiding 
reliability analysis.  

- Uncoupled methods, which consist of separating the reliability analysis from 
the deterministic optimization problem. The problem become into a sequence 
of deterministic optimizations followed by the reliability analysis.  

Below is brief description of the SORA method that will be used in this work. 

2.2 SORA (Sequential Optimization and Reliability Assessment) 

This method, proposed by Du and Chen [11], belongs to the uncoupled methods 
group. As discussed before, this family of methods avoids nested loops, making 
their solution faster in terms of computational time. In SORA method the 
reliability problem to be solved is expressed as follows:  

min ( , )
k x p

G u u                                      (4.a) 

subject to: 

        min                                            (4.b) 

Several algorithms has been proposed to solve the problem (4), and among them, 
one of the most popular is the AMV (Advanced Mean Value), described in Wu 
[12]. This algorithm works properly when the limit-state function is convex, but 
diverges or presents slow convergence when the function is concave. For such 
functions, the CMV algorithm (Conjugate Mean Value) has been developed, but 
is provides slow convergence when the function is convex. For this, Choi and 
Youn [13] propose a method named HMV (Hybrid Mean Value), which 
adaptively utilizes AMV and CMV methods for convex and concave limit state 
 

High Performance and Optimum Design of Structures and Materials  395

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 137, © 2014 WIT Press



 

Figure 1: Flowchart of SORA method. 

functions. This is the method chosen to accomplish the problem (4). A flowchart 
of the process is presented in Figure 1. 

3 Formulation and implementation of the problem 

The aim of this paper is to make a comparison of the results obtained in the 
deterministic and reliability based optimization for different structural 
configurations and different type of optimization: size and topology. The 
procedure followed in the three examples is the same. First of all, the 
deterministic optimization of the structural model is performed. This 
optimization is defined as minimizing the volume of the structure subject to the 
fulfillment of a number of stress constraints. This problem is expressed 
mathematically as: 

minV                                                     (5.a) 
subject to: 

             máx                                                 (5.b) 

     Afterwards, the compliance of the optimal structure for each load case is 
obtained. This information will be used in the next step to formulate the RBDO 
problem. The objective is to obtain a structure of minimum volume which fulfills 
the stress conditions defined in (5.b), as well as a number of probabilistic 
constraints. In this case the limit state is defined by the stiffness (inverse of 

compliance) of the previous deterministic solution. The compliance 
i

C of the 

structural design provided by the RBDO problem must have a lower value 

(hence, at least the same stiffness) in each load case than the value 
DET

i
C of the 

compliance of the structural design obtained in the deterministic optimization. 
For a structure with j subcases, this problem is expressed: 

minV                                                      (6.a) 
subject to: 

            máx                                                  (6.b) 

,

DET

i i f i
P C C P                                          (6.c) 
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     To solve this problem, the SORA method has been implemented in a 
computational code programmed in MatLab [13], which allows getting the 
solution of large problems. The steps followed to obtain the problem solution are 
described below: 
1. MatLab code calls Optistruct to obtain the optimal deterministic solution.  
2. Then this code starts an iterative process executing the steps needed to solve 

the reliability problem through HMV method.  

3. When this iterative process reaches convergence, the obtained point ku  is the 
Most Probable Failure Point (MPP), and thus the values of the random 
variables could be updated for the next deterministic optimization.  

4. With these new updated values, the base code launches a new deterministic 
optimization process (solved with Optistruct) to obtain the new value of the 
optimal design variables. 

5. Subsequently, HMV method is executed again to solve the reliability analysis 
problem. This leads to return again to step 2. 

6. This sequence of steps is repeated until convergence. 
     Figure 2 shows a flowchart of the process described above. The central part of 
the chart shows the RBDO process from the MatLab code. In the right part of the 
chart it is shown the flowchart that follows Optistruct to solve the successive 
deterministic optimizations, while in the left part of the chart it is presented the 
flowchart of the HMV method implemented in the MatLab code as well. 
 

 

Figure 2: Flowchart SORA method, combining MatLab and Optistruct. 
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4 Application examples 

To demonstrate the efficiency of the developed code, several examples of 
different types of structural optimization have been proposed. All of them are 
solved using the procedure described in the previous section. 

4.1 Topology optimization: 2D bar truss structure 

The methodology explained in section 3 has been applied to a topology 
optimization example, defined in Baldomir [14]. The design variables of the 
problem are the relative density of material in all elements that define the design 
region. The initial problem is to obtain the optimal material distribution in the 
domain, taking into account the loads and boundary conditions specified. In 
particular, this is a 2D rectangular domain of 10 m length and 3 m height with 
two loads applied in point A as shown in Figure 3. This figure presents a scheme 
of the structural model, loads and boundary conditions, as shown in the supports 
placed in B and C, respectively. Three load cases have been considered: 
 

- Vertical load of 1000 kN. 
- Horizontal load of 100 kN. 
- Combination of two previous load cases. 

 

 

Figure 3: Finite element model of the rectangular domain 

     First, the deterministic topology optimization (DTO) is performed, and after 
that the reliability based topology optimization (RBTO) is accomplished so as to 
compare the results of both analyses. The DTO problem consists of minimizing 
the total volume of the structure subject to a number of stress constraints. In this 
example the Von Mises stress in all finite elements must not exceed 355 MPa. 
The problem is formulated mathematically as follows: 

           minV                                                (7.a) 
subject to 

  355MPa                                            (7.b) 

     After solving this problem in Optistruct, the compliance of the 

optimal structure for all load cases is: 
6

1
9.374 10 /DETC mm N  , 
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5

2
1.872 10 /DETC mm N   and 

6

3
9.740 10 /DETC mm N  . The scheme obtained 

for the DTO is shown in Figure 4 and a conceptual 7-bar truss structure coherent 
with the solution. 
 

 

 

Figure 4: Conceptual design coherent with the DTO solution. 

Afterwards, the RBTO is performed using the methodology exposed in section 3. 
The formulation of this problem can be expressed as:                                                                                                   

minV                                                           (8.a) 
subject to 

355MPa                                                     (8.b) 

,

DET

i i f i
P C C P                                                 (8.c) 

In this piece of research, two analyses have been performed with different 
probabilities of failure. For the first one, the probability of failure is 

31.35 10
f

P    and for the second is 
72.86 10

f
P   , which correspond to 

reliability indexes 3   and 5  , respectively. 
     Loads magnitudes and the Young’s modulus of the material are the random 
variables, following both a normal distribution, with the mean and standard 
deviation values presented in Table 1. 

Table 1:  Mean and standard deviation of the random variables. 

Random variable Type of distribution       
Vertical load ( N ) Normal 

6
1.000 10  

5
1.000 10  0.1  

Horizontal load ( N ) Normal 
5

1.000 10  
4

1.000 10  0.1  
Young’s modulus ( MPa ) Normal 

5
2.100 10  

5
1.050 10  0.05  

     The results obtained in the two RBTO analyses are shown in Figures 5 and 6, 
and a summary of both the DTO and RBTO results is shown in Table 2. 

Table 2:  Summary results of topology optimization. 

 Deterministic 
optimization 

Reliability based optimization 
 3   5   
Objective function (

3
mm ) 

Initial fraction of volume (%) 

7
7.372 10  

16.4  

8
1.111 10  

24.7  

8
1.669 10  

37.1  

 
     It is remarkable that as the safety level increases, the number of elements in 
the mesh with high density levels increases. Besides, from a certain safety level, 
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new ramifications interpreted as bars appear inside the domain. In this example, 
after solving the DTO it could be said that the optimal bar structure that arises 
from the solution is shown in Figure 4. On the other hand, after performing the 
RBTO with a safety level of β = 5, the optimal structure arisen from the result is 
shown in Figure 6, where additional bars are generated in comparison with DTO. 

 

 

Figure 5: Results of the RBTO (β = 3). 

 

Figure 6: Conceptual design coherent with the RBTO with a safety level of  
β = 5. 

4.2 Size optimization: 2D bar truss structure 

The objective of this section is to apply the methodology of section 3 to size 
optimization problems. This example is defined as a logical continuation of the 
design process accomplished in the previous section, where the topology 
optimization provides a structural scheme, but without a feasible sizing of the 
structure. In this section, the starting point is the layout of Figure 4, where a 7-
bar truss structure can be interpreted as presented in Figure 7. 
 

 

Figure 7: 7-bar truss structure for size optimization. 
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     The mechanical characteristics of the materials, the applied loads and load 
cases considered in the new structure are the same as in the previous example. 
The design variables are the cross-sectional areas in all bars of the truss structure. 
The deterministic problem is defined by minimizing the total volume of the 
structure subject to stress constraints. The constraints to be fulfilled are that the 
axial stresses in all bars must be lower than 355 MPa. The mathematical 
formulation of this problem can be written as: 

minV                                                    (9.a) 
subject to: 

            355 ;  1,..., 7i MPa i                                      (9.b) 

After solving this problem, the compliances of the optimal structure for all load 
cases are obtained: 7

1
1.119 10 /DETC mm N  , 5

2
1.871 10 /DETC mm N   and 

7

3
1.134 10 /DETC mm N  . These values are used to impose the probabilistic 

constraints as stated in section 3. 
     As in the previous example, two analyses have been carried out imposing 
probabilities of failure of 

31.35 10
f

P   and 
72.86 10

f
P   , which correspond 

to reliability indexes 3    and 5  , respectively. The random variables are 
the loads values and the Young’s modulus of the material, whose uncertainty 
data is shown in Table 1.  
     Moreover, an additional analysis has been performed. Considering the layout 
of Figure 6, a new 13-bar truss structure can be defined as shown in Figure 8. 
 
 

 

Figure 8: 13-bar truss structure for size optimization. 

 
     The analysis performed consists of solving the RBDO problem defined above 
for this 13-bar structure imposing a safety level of 5   for the probabilistic 
constraint (6.c). The compliances imposed in this condition are taken from the 7-
bar example. This assures that the 13-bar structure obtained will be as rigid as 
the 7-bar one. Node coordinates that define the truss structure are shown in 
Table 3. 
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Table 3:  Node coordinates of the 13-bar structure.  

NODES 1 2 3 4 5 6 7 8 
Horizontal-coordinate (m) 0 10 2.5 7.5 5 2.5 1.05 3.75 
Vertical-coordinate (m) 0 0 3 3 0 0 1.5 1.5 

 
     Table 4 presents a summary of the results for the deterministic and the RBDO 
approaches for the 7-bar structure, as well as the results of the RBDO carried out 
for the 13-bar structure. 

Table 4:  Summary results of size optimization.  

 DO 7-bar 
structure 

RBDO 7-bar structure RBDO 13-
bar structure 

 3   5   5   

Obj. Function ( 3mm ) 
7

4.112 10  
7

7.195 10  
7

9.813 10  
7

9.704 10  
  
     For the 7-bar structure, it can be outlined that as the safety level increases, the 
cross-sectional areas increase, causing a weight increment in the structure. 
Comparing both structures for a safety level of 5  , it is noticeable that the 
13-bar structure provides a lower volume than the 7-bar structure, which agrees 
with the results obtained in the RBTO approach performed in section 4.1. In this 
section, for a safety level of 5   the optimal layout of Figure 6 leads to a 13-
bar structure instead of a 7-bar structure. 

4.3 3D Topology optimization: fuselage aircraft 

The methodology described in section 3 was also applied in a topology example 
of a simplified 3D fuselage aircraft. A side view of the finite element model 
representing the design region is shown in Figure 9. The model has 10 m length 
and the radio goes from 2.1 m to 0.45 m. All movements are constrained in the 
front part of fuselage and two set of loads are applied in the rear part: those 
transmitted by the vertical tail plane to the fuselage and the loads corresponding 
to the rear fuselage tail cone. 
     The results obtained are shown in Figures 10 and 11 and the numerical values 
of optimum volume are summarized in Table 5. 
     It can be observed an important increase in volume (17.4%) when a reliability 
approach is performed. As expected an increase in safety level leads to an 
increase in material volume. However the volume increase is not only produced 
by a member size increase but also by a change in the structural layout. 

Table 5:  Summary of topology optimization results. 

 Deterministic 
optimization 

Reliability based 
optimization ( 3  ) 

Objective function (mm3) 
Initial fraction of volume (%) 

9
3.495 10  

3.58  

9
4.111 10  

4.31  
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Figure 9: Finite element model. 

 

Figure 10: Deterministic topology optimization. 

 

Figure 11: RBTO solution (β = 3). 

5 Conclusions 

In this paper is proposed a strategy to combine commercial software with an 
efficient RBDO method through a Matlab code. It was stated the efficiency of 
this strategy to solve RBDO problems with a large number of design variables 
and several state limits. 
     It can also be concluded that the higher reliability requested in every 
structural design, the heavier the optimal structural designs are. In topology 
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optimization, when requesting a high reliability, can produce a change in 
structural layout, not only an increasing in the member size. This involves the 
development of new structural schemes.  
     It was also demonstrated that the size RBDO result from a previous RBTO 
layout provide better results than those from a DTO layout. 
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