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Abstract 

In architectural engineering, deployable scissor structures are generally used for 
mobile and temporary applications. They are characterised by their dual 
functionality as either kinematic mechanisms (during deployment) or load-
bearing skeletal structures (after deployment). It is crucial to realise that there is 
a direct and mutual relationship between the geometry, the kinematics and the 
structural response of the scissor system. Due to a relatively complex design 
process it can be highly beneficial to evaluate these structures at a pre-design 
stage in terms of their structural performance. In order to do so, new 
computational methods are introduced.  
     Karamba is a finite element plug-in for Grasshopper, fully embedded in the 
3D modelling software Rhinoceros, which calculates interactively the response 
of three dimensional beam structures. The advantage of this new tool is the 
compatibility with the parametric environment of Grasshopper. These software 
tools are still in development, but already show their potential in terms of 
geometric modelling and structural optimisation. 
     In this research it is shown in which way these evolving computational 
methods can contribute to the design of deployable scissor structures. By using 
the proposed methodology of preliminary evaluation, the scissor structures are 
geometrically and structurally optimised at an early stage, thereby enhancing the 
overall design process and facilitating further detailed analysis. 
Keywords: deployable structures, scissor structures, parametric design, 
kinematics, structural analysis, structural optimisation. 
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1 Introduction 

Deployable structures are characterised by their ability to transform and to adapt 
to evolving needs and changing environments. They are prefabricated space 
frames which can expand from a compact bundle of components into a larger-
span, load-bearing structural shape (Figure 1 and 2). Because of this dynamic, 
kinematic property they offer significant advantages over conventional, static 
structures for a wide spectrum of applications ranging from temporary 
architectural structures to the aerospace industry [1–4]. Deployable structures 
were classified by Hanaor and Levy [5] according to their morphological and 
kinematic characteristics creating a set of distinct subgroups. This paper is 
concerned with one of those subgroups: pantographs or scissor structures. These 
have  besides being transportable  the great advantage of speed and ease of 
erection and dismantling, while offering a huge volume expansion and a high 
deployment reliability [6]. 
 

 

Figure 1: Deployable cover for swimming pool in Seville designed by Escrig 
and Sanchez [7]. 

 

Figure 2: Expanding Geodesic Dome by Hoberman Associates Inc.© [8]. 

     Despite the advantages scissor structures (or pantograph structures) can offer, 
few have successfully been realised. The design process is complex: a scissor 
structure requires a thorough understanding of the specific 2D and 3D 
configurations which will give rise to a fully deployable geometry. Moreover, 
structural implications must be considered. Flexure in the beams remains a major 
feature that detracts from structural efficiency [5, 9, 10]. The key element is that 
there is a direct and mutual relationship between the geometry, the kinematics 
and structural response of the scissor system [11]. 
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Transforming these into static models necessitates additional information: 
connectivity relations between geometric entities, material properties, support 
conditions and loads are defined via special user interface components. These 
lend their basic features from those contained within GH but are customised for 
their use in Karamba. Thus the look-and-feel properties of the Karamba user 
interface correspond largely to that of GH. This is an important fact regarding 
user acceptance. Besides components for describing the static properties of a 
structure Karamba also comprises so called process features [15]: they represent 
commands to the FE-solver and describe the solution procedure to be employed. 
One such object can e.g. stand for the determination of the displacement 
response under given loads, another one for example for calculating natural 
vibration modes. 
     An important aspect of Karamba is its bi-directionality with respect to 
calculation data: the model response attained through physical simulation can be 
fed back into the geometric model. This allows to set up automated design loops 
that rationalise designs by taking into account physical data: openings in a 
structural element can e.g. be concentrated in areas of low force density. GH 
contains feed-back components which facilitate the selection of sets of 
parameters which are optimal with respect to quantifiable but otherwise arbitrary 
criteria. 
     There have been several previous attempts at coupling parametric design tools 
and structural modelling software. Most of them lack bi-directionality of 
information transfer between geometric and finite element model. None of them 
allows truly interactive calculations. There are many factors that contribute to a 
time delay between changing the features of a model and display of static 
response:  

(1) Traditional FE-programs are designed as stand-alone solutions and not 
as nodes within an integrated design system. Therefore they lack 
provisions for fast data exchange with external programs. 

(2) Traditional FE-packages are meant to provide structural engineers with 
comprehensive data for detailing. The sort and extent of response data 
cannot be limited to the amount which would be useful in early design 
phase. The unwanted information wastes computational resources. 

     In Karamba the above described problems are avoided by implementing the 
calculation core as a dynamic link library which makes it easy and fast to access 
and control all aspects of the FE-model via scripting languages like C# which is 
the language of choice within GH. An aspect of Karamba that adds to its speed 
of calculation is the fact that its capabilities are deliberately limited to that 
necessary in the early design phase: instead of e.g. employing isoparametric 
finite beam elements, hermitian elements are used. The latter are confined to 
linear elastic calculations of elements with straight axes. Yet the calculation of 
the element stiffness matrix can be done without the need for numeric integration 
and therefore very efficiently with respect to computation time. 
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stiffness values for the springs are set to a high value (1011 – 1013 kN(m)/m), 
though limited to avoid a badly conditioned stiffness-matrix which would lead to 
inaccurate numerical results in the FE calculations. 
     In the following chapter the structural influence of different initial scissor 
configurations is determined with the use of Karamba. Based on the mentioned  
new computational methods an evaluation methodology of scissor structures is 
proposed leading to a geometrical and structural optimisation at an early stage 
enhancing the overall design process and further detailed analysis (Figure 7). 
 

 

Figure 7: An evaluation methodology for deployable scissor structures based 
on parametric modelling. 

4 Structural analysis 

4.1 Case studies 

In this section the computational methods, as explained in chapter 3, are applied 
on a number of basic case studies of deployable scissor structures. The aim is to 
investigate if the proposed digital methods can be used for the structural 
evaluation of these types of structures in order to optimise them in an early 
design stage. The core of this paper is introducing the new digital tools in the 
research field of deployable scissor structures and clarifying how they are 
situated within and influence the proposed methodology (Figure 7). This is done 
by performing preliminary structural calculations on 2D scissor linkages. In 
reality 3D space enclosures are designed and these perform structurally different 
from 2D structures, but for this introductory paper the focus is put on a 
preliminary evaluation of the tools applied on 2D scissor cases.  
     The three main scissor units are considered: translational, polar and angulated 
(Figure 8). Each of them are examined in two differently curved arch shapes: a 
height-to-span ratio (H/S) of 0,25 and 0,5 respectively. Besides the H/S-ratio, the 
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arches have the same geometrical properties to make a justified comparison: a 
span of 5m, 5 scissor units along the arch and a structural thickness of 0,5m 
(Figure 9).  
 

 

Figure 8: Examined scissor linkages with H/S-ratio 0,25 – from left to right: 
translational, polar and angulated. 

 

Figure 9: Polar linkage with H/S=0,25 (left) and H/S=0,5 (right). 

     The geometrical line models, built in a parametric way, are the input of the 
Karamba tool which calculates interactively the response of the scissor models as 
beam structures (all are circular tube profiles of steel grade S235 with an outer 
diameter of 10 cm and a wall-thickness of 0,3 cm). The structural effects of 
parametric changes in the geometry of the line models are given in real-time with 
Karamba. Supports are set at the four free beam ends of the scissor arches to 
approximate how the structure is supported in reality as much as possible. A 
random mesh load of 1kN is applied on all the upper nodes. In Figure 10 a 
Karamba model is displayed which illustrates the stresses over the cross section 
– blue means tension stress, red compression.  
 

 

Figure 10: Karamba model view of an angulated scissor arch: indication of the 
loads, the supports and the stresses (blue is tension, red is 
compression and white represents an intermediate value). 
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     The numerical results will provide a preliminary judgment on the used scissor 
type and the examined architectural height. 

4.2 Numerical results 

Table 1 indicates the numerical output of Karamba for the different case studies. 
Figure 11 and 12 illustrate these results clearly for each height-to-span ratio. 
Different aspects of these results are evaluated in the following sections. 

Table 1:  The numerical results of the different case studies. 

 Displmax 
(m) 

σmax 
(MPa) 

Nmax 
(kN) 

Mmax 
(kNm) 

Vmax 
(kN) 

Member 
Length (m) 

Translational 
H/S=0,25 0,0024 61,7 7,69 1,24 9,06 0,89-1,53 

Translational H/S=0,5 0,0009 16,6 3,89 0,45 4,44 1,11-2,05 

Polar H/S=0,25 0,0032 57,2 4,17 1,22 6,56 1,34 

Polar H/S=0,5 0,0004 7,1 1,36 0,17 2,95 1,76 

Angulated H/S=0,25 0,0039 69,5 6,1 1,44 6,3 1,36 

Angulated H/S=0,5 0,005 50,2 3,95 1,21 2,21 1,86 
 

 

Figure 11: Comparison of the results between the different scissor units for 
H/S=0,25. 

4.2.1 Structural evaluation 
The comparison between Figure 11 and Figure 12 shows immediately that the 
geometry H/S = 0,5 is structurally more efficient. The two translational scissor 
cases show the largest shear forces, while the angulated cases have the lowest 
shear forces. For the other parameters (displmax, σmax, Nmax, Mmax), the two 
angulated cases have the highest values. The maximal displacement values 
(magnitude of mm) are all negligible compared to the span of 5m. 
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Figure 12: Comparison of the results between the different scissor units for 
H/S=0,5. 

     Generally it can be concluded from the numerical results that the polar 
configuration is the most efficient from a structural point of view. One has to 
bear in mind that this conclusion is applicable only for the investigated 
configuration (span of 5m, 5 scissor units and a thickness of 0,5m). To draw a 
more general conclusion other geometrical properties must be analysed (which 
with these digital methods could be done easily and fast).  
     The examination and analysis of the numerical output emphasised how 
efficient the proposed digital methods are for the evaluation of scissor structures. 
In real time the structural output is generated when the input parameters are 
changed. This means that a whole selection of different scissor geometries could 
be analysed extremely fast and different input parameters could be verified in 
terms of their structural influence. So, in this early design stage optimal scissor 
geometries can be chosen which are subsequently, at a later stage, optimised and 
analysed in greater detail.  

4.2.2 Manufacturing evaluation 
Besides the structural performance of a scissor geometry, the manufacturing 
properties can also influence the decision-making in the design process. 
Angulated scissor units consist of kinked beams which require a more complex 
manufacturing process than straight beams in case of translational and polar 
units. 
     Table 1 also gives the member length of each scissor beam per configuration. 
In case of the translational arches, the configuration is built up with 10 beams, 
each with a different length (ranging from 0,89m to 1,53m for H/S=0,25 and 
from 1,11m to 2,05m for H/S=0,5) leading to a more complex manufacturing 
process. This is not the case for angulated or polar scissors, in which all the 
members have the same length.  
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     So, looking from both a structural and a manufacturing point of view, the 
polar geometry is the most efficient for the investigated configuration.   
     Generally, the shorter the beam the less sensitive it is to buckling. The 
member lengths in table 1 show that the H/S ratio of 0,25 leads to shorter beams. 
An important remark is that the buckling problem under axial loading of the 
scissor beams is not taken into account in the numerical analysis which defines 
the geometries with an H/S ratio of 0,5 as the structurally best performing. This 
must be included in future developments.  

4.2.3 Architectural evaluation 
The architectural evaluation of the configurations could also influence the design 
process to a certain extent, because the configurations form an envelope acting as 
a space enclosure. Here only a configuration with a single curvature is examined, 
which, through further research, must be extended to other 3D curved shapes.  
     For now, only 2D arches have been investigated, which differ in behaviour 
from the 3D barrel vaults they would represent in real life, but the architectural 
shape remains the same. Two configurations are investigated: a shallow 
curvature (H/S=0,25) and an arch with a semi-circular shape (H/S=0,5). These 
parameters immediately influence the usable enclosed space: the higher the H/S 
ratio, the more headroom is available inside the structure. So, also from an 
architectural and functional point of view the H/S ratio of 0,5 is more beneficial.  

5 Conclusions 

The aim of this paper was to introduce new digital tools which are able to 
optimise the design process of deployable scissor structures. There is a direct 
relation between the geometry, the kinematics and the structural response of 
scissor systems which makes the design often very complex. In previous 
research generally the geometry, the kinematics and the structural analysis are 
developed and investigated as separate entities (with different tools or software 
packages). In this research an evaluation method (figure 7) is proposed with new 
digital tools which provide an optimisation loop in the early design stage and 
within a single software environment. Using parametric tools for the geometry 
design (like Grasshopper within Rhinoceros) which are linked in real time to a 
structural calculation method (like Karamba within Grasshopper) is a large step 
forward. This approach allows for the improvement of the design and realisation 
process of scissor structures, by taking the structural performance into account 
during the decision-making on geometrical design level.  
     Further research is needed on different levels. The evaluation methodology 
must be further optimised together with the developments and improvements of 
the digital tools. At present one configuration (span of 5m, 5 scissor units and a 
thickness of 0,5m) is investigated, but also other geometrical properties should 
be analysed, linking the input parameters for the design to their structural 
efficiency. An extension should be made to include 3D configurations, in 
addition to prototype tests comparing numerical and experimental results of the 
proposed methodology.  
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