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Abstract 

A mesh reduction (regular) perturbation technique was developed to overcome 
inefficient and unviable analytical and “brute force” numerical solutions for 
structures with imperfections and for imperfection sensitive structures. Using 
this perturbation technique, a case study is presented to determine the effects of 
uncontrolled deviations in temperature on the stability of beam on elastic 
foundation. The study further explores the effects of imperfections on beams for 
five independent imperfection patterns, namely variability in initial shape, 
modulus of elasticity, moment of inertia, foundation stiffness,  temperature, and 
their combined effects. The study demonstrates thermal imperfections behave in 
the same manner as other non-shape imperfections, while shape imperfections 
appear to be most sensitive. When thermal and shape imperfections were 
combined, all other imperfections were shown to have diminished effects.  
Keywords:   stability, thermal imperfections, beam on elastic foundation, regular 
perturbation, eigenvalue. 

1 Introduction 

Micro-sensors and devices are not only small but are also fragile.  Small 
imperfections in shape, materials, and operating conditions could severely limit 
their use. How these small devices behave in less than perfect conditions is of 
great interest.  How will the stability of these devices be affected? 
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     Two predominant classical stability analyses are differential equations and 
energy method approaches.  In theory these approaches have worked well for 
conservative structures that are insensitive to imperfections, but in practice no 
structure has perfect geometry and the applied load may not be concentric.  
Tolerances account for irregularities in structural members. 
     Cylindrical shells and beams on elastic foundations are two structure types 
that are sensitive to imperfections [1, 10]. Structural imperfections are defined as 
any small and unintended deviations or variations from the perfect structure [7, 
13]. If the structure is sensitive to imperfections, the neighboring equilibrium 
position exists at loads smaller than the critical load; this equilibrium position is 
unstable [9]. The nature of structural imperfections is generally small and 
unavoidable.  Imperfections considered in this study include variability and 
combined effects in shape, modulus of elasticity, moment of inertia, foundation 
stiffness, and temperature. 

2 Numerical method 

In 1945, Koiter showed that imperfection effects on structures caused differences 
between theoretical and experimental results [5]. Koiter also examined the 
interaction of various buckling modes and analyzed imperfection sensitivity; 
however, this investigation was limited to shape imperfection only [13]. For 
medium and high imperfection-sensitive structures, the buckling load for the 
perfect structure extends below the bifurcation load by as much as 70%.  
Palassopoulos concluded that Koiter’s analysis was fundamentally inadequate 
for imperfection sensitivity [8] and proposed the critical imperfection magnitude 
(CIM) method [7].  His theory was based on the expansion of potential energy 
without any limitations to shape imperfection. 
     CIM is based on the second-order expansion of the potential energy and the 
fourth-order expansion of a kinematically admissible set of generalized 
coordinates.  For the present nonlinear problem, the second-order expansion of 
potential energy has given good results for the inextensional beam on elastic 
foundation (BEF) [7, 13]. 
     A “perfect” structure represents those beams with zero imperfections, while 
“actual” structures contain imperfections of varying degrees.  First, the potential 
energy of the “perfect” structure, V0, is expanded in terms of the kinematically 
admissible set of generalized coordinates qj, j = 1, 2, …, M.   

V0 = v0 + a0jqj + b0jkqjqk + c0jklqjqkql + . . . (1) 

     The subscript, 0, in variables and coefficients denotes a perfect structure.  For 
the “actual” structure its potential energy, V, is expended about V0, which is the 
potential energy for the corresponding “perfect” structure. 

 V    =  V0 + V1 + 2V2 + . . . (2) 
 
 

 V1  =  v1 + a1jqj + b1jkqjqk + c1jklqjqkql + . . . (3) 
 
 

 V2  =  v2 + a2jqj + b2jkqjqk + c2jklqjqkql + . . . (4) 
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     The universal perturbation parameter is denoted by , which must be 
sufficiently small for the convergence of power series expansion of V.  The same 
parameter, , is also used in the expansion of the material, load, and geometric 
parameters.  For example, any geometric or material parameters, S(x), can 
always be expanded about its mean value, S0, and an imperfection pattern, s(x), 
as S(x) = S0 [1 + s(x)]. 
     The coefficients a(.), b(.), c(.), and d(.) in eqns. (1)–(4) are chosen to be 
symmetric with respect to permutation of their indices.  The application of 
symmetry helps to increase the computational efficiency for CIM. Then the 
potential energy is: 
 

V =  (v0 + v1 + 2v2 + ...) + (a0j + a1j + 2a2j + ...)qj 
 + (bojk + b1jk + 2b2jk + ...)qjqk 
                            + (c0jkl + c1jkl + 2c2jkl + ...)qjqkql (5) 

     The first and second variations, V and 2V, of the potential energy yield 
equilibrium and stability equations. CIM requires two independent expansions: 
the potential energy expansion of the “actual” structures and expansion of the 
prebuckling equilibrium state qj of the actual structure around the prebuckling 
equilibrium state q0j of the perfect structure.  
 

V  = {(a0j + a1j + 2a2j + ...) 
                      + 2 (b0jk + b1jk + 2b2jk + ...) qk 

                           + 3 (cojkl + c1jkl + 2c2jkl + ...) qkql (6) 

2V = {2(bojk + b1jk + 2b2jk + ...) 
                 + 6 (cojkl + c1jkl + 2c2jkl + ...) ql (7) 

     The CIM approach will lead to formulation of a generalized eigenvalue 
problem in terms of .  There are M eigenvalues in the solution, one for each 
buckling mode.  The smallest eigenvalue is termed the critical imperfection 
magnitude, cr, which is the smallest imperfection magnitude permissible prior to 
bifurcation. 
     The new eigenvalue equation is presented as:  
 

  (8) 

 
 
 

 

 (9) 
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  (10) 

 

where I and 0 represent identity and zero submatrices.   

3 Beam on elastic foundation (BEF) formulation 

     BEF is simple yet sensitive enough to demonstrate the effects of smallest 
imperfections.  The model has also been examined thoroughly in both 
deterministic and stochastic analyses [7, 13], and the model problem exhibits 
features readily found in many microdevices. Five independent imperfections 
will be considered herein, namely variability in initial shape, modulus of 
elasticity, foundation stiffness, moment of inertia, and temperature. 
     Consider a simply supported beam on elastic foundation.  The beam is 
oriented in the standard right-hand system with the positive X-axis pointing to 
the right, the positive Y-axis pointing down.  The beam has length (L), applied 
load (P), modulus of elasticity (E), moment of inertia (I), and elastic foundation 
stiffness (F).  The temperature change is denoted by T, and the change exerts 
thermal loads on the beam.  Applied loads cause the beam to deflect in the lateral 
direction; this deflection is represented by W. These variables are then 
transformed to dimensionless variables: 
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     Imperfections fluctuate about their mean value.  Shape imperfections (Type I) 
deviate from the zero mean and Type II imperfections (all others) fluctuate about 
some value other than zero and are determined by physical and geometric 
properties.  
 
 E(x) = E0[1 + e(x)] (13) 
 

 I(x) = I0[1 + g(x)] (14) 
 

 (x) = 0[1+ f(x) + CtT0t(x)] (15) 
 

 w0 = h(x) (16) 
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 T(x) = T0[1 + t(x)] (19) 
 
     In eqns. (13)–(19), E(x), I(x), (x), A(x), and T(x) represent elastic modulus, 
moment of inertia, foundation stiffness, cross section area, and temperature, 
respectively. Within the imperfection expressions, lowercase letters e(x), g(x), 
f(x), and t(x) represent deterministic imperfection patterns in elastic modulus, 
moment of inertia, foundation stiffness, and temperature change; mean values are 
represented by variables with zero subscripts. 
     The expression has three components: strain energy (VB), potential energy of 
the applied load (VP), and of the elastic foundation (VF): V = VB + VF + VP, 
where the first and second derivatives are denoted by single and double primes. 
Dividing the expression and its components by (E0I0/L) yield the dimensionless 
form of the potential energy.  For the normalized beam, all integrals are 
evaluated for xŒ[0, ]. 
     Before proceeding to the development of the coefficients of a(.), b(.), c(.), and 
d(.), the potential energy and imperfection patterns should be appropriately 
discretized. Since the modulus of elasticity (e), foundation stiffness (f), moment 
of inertia (g), and change in temperature (t) imperfections have no forced 
boundary conditions, a cosine series can be used to simulate imperfection 
patterns:  

 

(x)   j cos( jx)
j1

N

  (20) 

 

where   is (e), (f), (g), or (t). Shape imperfections, on the other hand, are forced 
to be zero at the boundaries; a sine series is used: 
 

 




N

1j
j )jxsin(h)x(h  (21) 

 

     In eqns. (20-21), ej, gj, fj, tj, and hj are the deterministic imperfection 
amplitudes and N is the number of imperfection modes which are taken into 
account in the numerical computations.  Similar to shape imperfections, lateral 
displacement modes are expanded in a sine series to meet the boundary 
conditions: 

 




M

1j
j )jxsin(q)x(w  (22) 

 

where M is the number of displacement modes. 

4 Numerical results 

A numerical solution of the nonlinear eigenvalue problem is time-consuming 
stemming from a full coefficient matrix, which can be as large as 2M x 2M, 
where M is the number of buckling modes. Modifications have been made to the 
eigenvalue solver to allow a more efficient computation [13]. 
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     The coefficient matrix can be divided into four quadrants. The first quadrant 
contains the Type I coefficients (2jk), and the second quadrant contains Type II 
(1jk) coefficients. The third and fourth sectors contain identity and zero matrices, 
respectively. Solving combined imperfection types yields a full coefficient 
matrix. All imperfections were considered individually and collectively. 
Imperfection and buckling modes all converged in this study similar to a 
previous study [13]. Based on earlier studies [4, 7, 13], relatively stable/stiff soil 
parameter value, 0 of 225 is chosen for this study. Large values represent stiff 
foundation. 
     The classical buckling load, cl, refers to the applied load which causes the 
structure to buckle in the absence of imperfections. For actual structures the 
applied load, , should be lower than the classical buckling load.  It has been 
shown that the classical load for BEF is obtained by minimizing the expression 
of (j4 + 0)/j

2 where j = 1, 2, 3, ..., M [7, 12, 13]. In this study, 99, 97, 95, and 
90% of the classical load were used. 
     As for all imperfections, temperature imperfections vary about their mean 
value, T0, described as the normalized average change in temperature.  This 
normalization can be determined by dividing the mean change in temperature by 
the room temperature of 30C. After analyzing the program output and 
considering its physical meaning, T0 is set at -0.167, where a negative sign for T0 
means a reduction in temperature.  Temperature reduction is important because it 
introduces the internal compression load to the BEF, which increases the applied 
load. Furthermore, a reduction in T0 causes an increase in the foundation 
stiffness. The coefficient of thermal expansion, , is set at 1. 
     The foundation stiffness factor, Ct, prescribes the percent increase in 
foundation stiffness when the temperature is reduced.  Ct is normalized by the 
foundation stiffness, 0, and is chosen to be -0.0024. This value represents about 
a 0.04% increase in foundation stiffness per degree decrease in temperature 
based on Guyer and Brownell [3]. 
     A cosine function is selected for Type II imperfections. The magnitude of the 
imperfection is chosen as 0.002, but imperfection magnitude does not affect 
RMS. 
 

 

RMS
(i)[]  cr

( i) 1


[(x)]2 dx

0



  (23) 

 

where [ ] is e, k, h or t and i = 1, 2, …, M.  The product of the imperfection 
magnitude cr and RMS imperfection patterns should not be greater than 0.35 
since it violates the nature of the perturbation approximation and are physically 
meaningless [13]. 
     From fig. 1, five imperfection patterns were analyzed individually and 
compared to assess the relative importance to each other. Shape appears to be the 
most sensitive followed by temperature, foundation stiffness, moment of inertia, 
and modulus of elasticity. All Type II imperfections had RMS similar in shape, 
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orientation, and location. This result was anticipated since only 1jk in the 
potential energy was influenced by Type II imperfections.  
     A second observation from fig. 1 is that BEF was determined to be the most 
sensitive to shape imperfections and the least sensitive to change in temperature 
imperfections. The third observation is that the imperfection sensitivity for 
change in temperature imperfection increases when the magnitude increases of 
the mean value for change in temperature increases.  
     In fig. 2, RMS values for temperature are shown. The mean value for change 
in temperature is chosen as -0.167 to demonstrate its effects. This figure shows 
that t(x) is the least sensitive by itself. The buckling strength of BEF is reduced 
when in the presence of other Type II imperfections.  When all Type II 
imperfections are present together, RMS can be reduced as much as 70%. 
 

 
 

Figure 1: Direct comparison of e, f, g, h, and t. 

 

Figure 2: Effects on change in temperature εt
RMS 
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     Fig. 3 represents /cr plotted as a function of h
RMS and t

RMS for temperature 
and shape imperfections. The purpose of these two figures is to determine 
additive effects of Type II imperfections on the existing temperature and shape 
imperfections. These figures show no significant effects for the presence of other 
imperfections. Shape is the most dominant imperfection pattern. 

 

 

Figure 3: Effects on initial shape and temperature εh
RMS and εt

RMS. 

 
Figure 4: Effects on modulus of elasticity εe

RMS. 

     Figs. 4–6 represent /cr plotted as a function of e
RMS, f

RMS, and g
RMS.  The 

presence of any Type II imperfections can reduce the RMS, and the reduction can 
vary from 10 to 57%.  The presence of Type I imperfections introduced a 
remarkable seventyfold increase in sensitivity. 
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Figure 5: Effects on foundation stiffness εf
RMS. 

 

 

Figure 6: Effects on moment of inertia εg
RMS. 

5 Conclusions 

     This study has considered imperfection effects on a beam on elastic 
foundation (BEF).  The critical imperfection magnitude method has been used to 
analyze the significance of imperfections and their imperfection interactions on 
BEF. 
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     Small, uncontrolled deviations in temperature from the mean value, T0, have a 
negligible effect on the stability of BEF.  In fact, temperature has the least 
impact when normalized average change in temperature is less than -0.033.  If 
the mean value or amplitude of imperfections is large, temperature imperfections 
can have adverse effects.  Normalized average change in temperature of -0.4,  
-0.233, -0.167, and -0.067 will reduce the effective buckling load to 90, 95, 97, 
and 99% of the classical value. 
     Even though the effects of temperature imperfection alone are insignificant, 
thermal imperfections can stimulate other material and geometric imperfections.  
When foundation stiffness imperfections are coupled with -0.167 variability in 
temperature, the load factor could be reduced to 71% of the classical value.  
Thermal imperfections behave in the same manner as other Type II 
imperfections, while shape imperfections appear to be most sensitive to BEF. 
When thermal and shape imperfections were combined, all other imperfections 
were shown to have diminished effects. 
     The critical imperfection magnitude method used in this study was strongly 
influenced by shape imperfection patterns. If all imperfection patterns for real 
structures are known, this deterministic study can be used to accurately 
determine the effects of those imperfections. If imperfection patterns are not 
known, stochastic methods can be used to accurately simulate imperfection 
patterns [4, 13]. 

References 

[1] Almroth, B.O., Holmes, A.M.C., & Brush, D.O., An Experimental Study of 
the Buckling of Cylinders Under Axial Compression.  Experimental 
Mechanics, pp. 263-270, 1964. 

[2] Bazant, Z. & Cedolin, L.  Stability of Structures. Oxford, 1991. 
[3] Guyer, E.C. & Brownell, D.L., Handbook of Applied Thermal Design. 

McGraw Hill: New York, 1989. 
[4] Hoffman, J.A., Stability of Structures Subjected to Eccentric Load 

Imperfections. M.S. thesis. Oklahoma State University, 1996. 
[5] Koiter, W.T., On the Stability of Elastic Equilibrium. Ph.D. thesis.  Delft, 

Holland, 1967. 
[6] Langhaar, H.L., Energy Method in Applied Mechanics. Krieger: 

Melbourne, 1989. 
[7] Palassopoulos, G.V., A New approach to the Buckling of Imperfection-

Sensitive Structures. Journal of Engineering Mechanics, 119, pp. 850-869, 
1993. 

[8] Palassopoulos, G.V., Response Variability of Structures Subjected to 
Bifurcation Buckling. Journal of Engineering Mechanics, 118, pp. 1164-
1183, 1992. 

[9] Simitses, G.J., An Introduction to the Elastic Stability of Structures. 
Krieger: Melbourne, 1976. 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 112, © 2010 WIT Press

542  High Performance Structures and Materials V



[10] Tennyson, R.C., Muggeridge, D.B. & Caswell, R.D., Buckling of 
Cylindrical Shells Having Axisymmetric Imperfection Distributions.  AIAA 
Journal, 9, pp. 924-930, 1971. 

[11] Thompson, J.M.T. & Hunt, G.W., Elastic Instability Phenomena. Wiley: 
New York, 1984. 

[12] Timoshenko, S.P. & Gere, J.M., Theory of Elastic Stability. McGraw-Hill: 
New York, 1961. 

[13] Yeigh, B.W. Imperfections and Instabilities. Ph.D. thesis, Princeton 
University, 1995. 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 112, © 2010 WIT Press

High Performance Structures and Materials V  543




