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Abstract 

A fast and dynamic method to determine the viscosity of a Newtonian fluid can 
be achieved by measuring the damping value of a torsional resonator immersed 
in the fluid. For the investigation of complex fluids, the viscous as well as the 
elastic behaviour of the sample have to be observed. Since these properties vary 
with shear rate, several frequencies have to be analysed. 
     An approach is presented that allows to measure the viscoelastic parameters 
of a complex fluid via the resonance frequencies and damping values of a 
torsional rod vibrating at several vibration modes, i.e. at several frequencies. 
     The measurement is performed with a phase-locked loop (PLL) based control 
loop, which uses the characteristic value of the phase difference between 
excitation of the sensor and response at resonance (e.g. 90°) to track the 
resonance frequencies. The slope of the phase curve at resonance, which can be 
identified via two different frequencies near resonance (e.g. at 90° േ  is related (ߙ
to the damping. 
     The focus of this work lies on the derivation of explicit, analytic equations 
that relate the vibrational parameters of the whole system (resonator + fluid) with 
the properties of the surrounding fluid for the case of low viscosity and elasticity.  
Keywords: resonance sensor, vibration control, complex fluids, rheology, phase-
locked loop. 

1 Introduction 

The measurement of the rheological properties of complex fluids is an important 
task in both scientific research and industrial applications. One of the major 
properties of a complex fluid is its viscoelastic behaviour, which describes the 
behaviour lying in between the classical extremes of a Newtonian fluid and 

Fluid Structure Interaction VII  191

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 129, © 2013 WIT Press

doi:10.2495/ 3FSI1 0171



Hookean elastic solid. Thus, viscoelastic materials have properties of both of 
these extremes, which leads to the fact that they exhibit time-dependent strain 
when a stress is applied. This behaviour is described by the relaxation time of a 
fluid, whereas a fluid can possess different relaxation times [1]. It can also be 
described by the complex coefficient of dynamic viscosity כߟ, which is a 
generalization of the concept of viscosity for a viscoelastic fluid undergoing 
harmonic motion [2]. Since complex fluids exhibit different structural features 
that range over many orders of magnitude, their relaxation times span over a 
broad range of frequencies [1]. For this purpose, commercial rotating parallel-
plate rheometers can vary their frequency continuously, hence providing a good 
frequency resolution. Unfortunately, due to the measurement principle, they have 
an upper frequency limit of about 100 Hz. With the aim to investigate fluids with 
short relaxation times, many instruments with the objective to operate at higher 
frequencies have therefore been developed in the past. Already in 1970, Schrag 
and Johnson [3] described the “multiple lumped resonator”, a torsionally 
vibrating rod consisting of several discrete masses that define five discrete 
resonance frequencies in the range of 100 Hz to 8300 Hz. The resonator is 
immersed in the sample fluid and excited at each of the resonance frequencies. 
The shift in resonance frequency and the damping form the base for the 
calculation of the real and imaginary part of כߟ. A similar approach is followed 
by Stokich et al. [4], who uses eleven torsional vibration modes of a freely 
mounted quartz piezoelectric crystal. Whereas these devices are based on one 
resonator, Blom and Mellema [5] uses four differently dimensioned torsional 
pendulums to provide the frequency dependent information.  
     These instruments have all in common that they cover a broad frequency 
range and provide relatively good accuracy. However, most of them are rather 
for academic or laboratory use. The present work presents a device for the 
characterization of viscoelastic fluids that has a robust design and can thus be 
integrated in industrial processes. It provides continuous information of כߟ and is 
therefore suitable as process or quality control, e.g. in chemical or food industry. 
The design is based on an existing viscosity sensor [2, 6], consisting of a 
torsionally vibrating hollow cylinder and has been extended to function at 
several vibration modes. 

2 Measurement principle and sensor design 

The sensor design which is used in this work is depicted in fig. 1. The vibrating 
part consists of an outer hollow cylinder (4), which is in contact with the sample 
fluid (7). It is at one end fixed to the body (1) and on the other side connected to 
an inner hollow cylinder (5), which leads inside the outer tube back into the 
body. At its free end a permanent magnet (3) is mounted, surrounded by a coil 
arrangement (2). The coils are placed such that an alternating current leads to a 
harmonic momentum, exciting the system to torsional vibrations. The 
arrangement of the tubes represents a continuous system, which possesses 
theoretically an infinite number of vibration modes i.e. resonance frequencies 
[7]. Due to the surrounding fluid, the resonance frequencies and the damping 
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values of the resonator change. With a laser Doppler vibrometer (6) the velocity 
of the inner tube can be measured and used in a control loop, which controls the 
excitation frequency of the excitation moment. The laser beam is arranged as 
near as possible to the excitation to achieve nearly collocated control [8]. The 
control loop is based on a phase-locked loop (PLL), which measures the actual 
phase shift between excitation and laser signal and tries to reduce the difference 
between actual phase shift and the characteristic value at resonance ሺΔΘ௦ሻ by 
adjusting the excitation frequency. Therewith, one is able to find the resonance 
frequencies and maintain resonance excitation. Fig. 2 shows an exemplary phase 
shift vs. frequency curve for a one degree of freedom oscillator to illustrate the 
relationship between measured error ΔΘ െ ΔΘ௦ and control variable ߱. 
 
 

 
 

Figure 1: Illustration of the sensor design. (1) sensor body, (2) excitation 
coil, (3) magnet, (4) outer tube, (5) inner tube, (6) laser readout, 
(7) sample fluid. 

 

 

Figure 2: Exemplary phase spectrum between excitation moment and 
velocity readout near the resonance frequency. 
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The slope of the phase curve at resonance, which can be identified via two 
different frequencies near resonance (at ΔΘ௦ േ  ሻ, is related to the dampingߙ
coefficient ߜ 

ߜ ൌ Δ߱ ڄ
1

2 tanሺΔߙሻ
.  

(1)

3 Analytical model of the sensor 

The derivation of analytical equations that connect the measurement parameters 
of the sensor with the properties of a viscoelastic fluid is presented in the 
following section. General non-linear viscoelasticity explores the dependence of 
the rheological properties of a fluid on the absolute strain it is subjected to [1]. 
Since the sensor performs a non-uniform, harmonic motion, the strain is not 
constant. Therefore, a linear viscoelastic fluid has to be assumed in the present 
context, which has a behaviour independent on the strain. It can thus be 
described with the frequency dependent complex viscosity 

כߟ ൌ ᇱሺ߱ሻߟ െ ᇱᇱሺ߱ሻ (2)ߟ݅

which is similar to Newton’s formulation, the ratio of shear stress ߬ to the rate of 
shear ߛሶ  [1] 

߬ሺݐሻ ൌ  ሻ. (3)ݐሶሺߛכߟ

     To simplify the calculations and to provide useful equations at the end as well 
as to reach useful frequencies, the following specifications have been made: 
 

a) The sensor shall be designed so that the lowest frequency without fluid 
is greater than 1000 Hz; 

b) The material damping has to be low to increase the influence of the 
fluid; 

c) The viscosity of the fluid is limited to ߟᇱ ൏ 1 Pas, the elasticity shall be 
smaller than the viscosity, ߟᇱᇱ ا  .Ԣߟ

3.1 A single rod with viscoelastic fluid loading 

Since the interaction between fluid and structure occurs mainly on the outer tube, 
a torsionally vibrating, elastic rod is considered for the beginning, as depicted in 
fig. 3. Considering the rod without fluid, the differential equation can easily be 
set up with 

,ݖΦᇱᇱሺܫܩ ሻݐ െ Φሷܫߩ ሺݖ, ሻݐ ൌ 0, (4) 

where ΦԢ denotes the derivative of the angular displacement Φ with respect to ݖ 
and Φሶ  the derivative with respect to time t [7]. Using the separation ansatz 

Φሺݖ, ሻݐ ൌ Φሺݐሻ ڄ e

ଵ
ఒ
௭
, (5) 
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in which ߣ denotes the spatial wavelength according to the n-th vibration mode, 
the solution for Φሺݐሻ can then easily be derived [7]. The resonance frequencies 
of the rod are given as 

߱௦, ൌ ඨ
ܩ
ଶߣߩ

. (6) 

     For the sake of readability the index n is omitted in the following calculations. 
     To model the material damping of the system the shear modulus can be 
written as a complex number ܩ ൌ  ሺ1ܩ  ݅ ڄ 1/ܳሻ, including the Q-factor of the 
material. The resonance frequency therewith becomes complex as well with 
 

߱௦ ൌ ට
ீబ
ఘఒమ

ቀ1  ݅
ଵ

ொ
ቁ ൎ ߱௦,  ݅

ఠೝೞ,బ
ଶொ

 , (7) 

including the undamped resonance frequency ߱௦, and the damping factor 
ߜ ൌ ߱௦,/2ܳ. Following the calculation in [9] and introducing the complex 
viscosity (2), the shear stress of a viscoelastic, incompressible fluid at ݎ ൌ ܴ can 
be described by 

߬ఝ ൎ ቌܴ߱ඨ
1
2
כߟ߱ߩ ڄ ሺ1 െ ݅ሻ െ

3
2
ቍכߟ߱݅ ڄ Φሺݖ, ሻݐ ൌ ߬̂ఝΦሺݖ,  ሻ (8)ݐ

where ߩ denotes the fluid density. The shear stress exerts an external moment 
on the rod, which changes eqn. (4) to 

,ݖΦᇱᇱሺܩ ሻݐ െ Φሷߩ ሺݖ, ሻݐ ൌ ,ݖఝΦሺ̂߬ߢ ሻݐ , (9) 

ߢ ൌ
ଶܴߨ2

ܫ
ൌ

4ܴଶ

ሺܴସ െ ݎ
ସሻ
. (10) 

Using again ansatz (5), eqn. (9) simplifies to the homogeneous differential 
equation 

Φሷ ሺݐሻ  ൭
ܩ
ଶߣߩ

െ
ߢ
ߩ
൫Ը൛߬̂ఝൟ  ݅Ա൛߬̂ఝൟ൯൱Φሺݐሻ ൌ 0 (11) 

in which ߬̂ఝ has been split up in its real part Ըሼ߬̂ఝሽ and imaginary part Աሼ߬̂ఝሽ. 
 

 
Figure 3: Single infinite rod, supported at one end and surrounded by fluid. 

 ܫ ,the density of the material ߩ ,presents the shear modulus ܩ
denotes the polar moment of inertia. 
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     With the assumption that there exist no reciprocal effects between frequency 
dependent fluid forces and oscillation frequency, the resonance frequency can be 
directly extracted from eqn. (8) with (6) as 

 ߱௦
 ൌ ඨ߱௦ െ

ߢ
ߩ
൫Ը൛߬̂ఝൟ  ݅Ա൛߬̂ఝൟ൯ 

ൎ ߱௦ െ
1
2

1
߱௦

ߢ
ߩ
൫Ը൛߬̂ఝൟ  ݅Ա൛߬̂ఝൟ൯ 

(12) 

     The shift in frequency and the additional damping can then be written as  

Δ߱ ൌ ߱௦, െ ߱௦,
 ൎ

1
2

1
߱௦,

ߢ
ߩ
Ը൛߬̂ఝൟ , (13) 

Δߜ ൌ ߜ െ ߜ ൎ
1
2

1
߱௦,

ߢ
ߩ
Ա൛߬̂ఝൟ , (14) 

     A series expansion around ߟᇱᇱ ൌ 0 can be applied to simplify the real and 
imaginary part of ߬̂ఝ in eqn. (13) and (14). Taking the squared value, the easy 
formulations  

Δ߱ଶ ൌ
1
8
ଶߢ
ܴଶ

ଶߩ
߱௦,ߩ ڄ ሺߟᇱ െ  ᇱᇱሻ (15)ߟ

Δߜଶ ൌ
1
8
ଶߢ
ܴଶ

ଶߩ
߱௦,ߩ ڄ ሺߟᇱ   ᇱᇱሻ (16)ߟ

are finally obtained. Hence, the viscosity decreases the resonance frequency and 
increases the damping, whereas the elastic part increases both, the damping and 
the frequency. These results are plausible, considering the fluid as an additional 
mass, spring and damping element. 

3.2 Sensor equations for the whole resonator 

Since the complete resonator consists of several parts (fig. 4), which are only 
partially surrounded by the fluid, the sensor equations will become more 
complex. It is thus not possible to derive analytic equations as it was done in 
section 3.1. However, neglecting effects at the tip of the rod, it can be assumed 
that the fluids influence on the whole sensor will be, analogue to eqns (15) and 
(16), of the form  

Δ߱ଶ ൌ ࢇ ڄ ߱௦,,ߩ ڄ ሺߟᇱ െ  ᇱᇱሻߟ
Δߜଶ ൌ ࢇ ڄ ߱௦,,ߩ ڄ ሺߟᇱ   ᇱᇱሻߟ

(17) 

where the factor ܽ is assumed to be constant but dependent on the mode shape. 
As previously introduced, the index n denotes the number of the vibration mode. 
To prove this assumption an impedance based semi-analytic model has been 
derived to describe the behaviour of the whole system. Thereby, a system can be 
separated in different elements, whose mechanical impedances ܼ can be 
described with standard formulations. The whole system is then described by a 
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series connection of these impedances. From [9], the impedance ܼ of a fluid 
loaded tube like in fig. 3 is given at ݖ ൌ ݈ as 

ܼሺ݈ሻ ൌ
cosሺ݇ᇱ݈ሻ 

݅݇ᇱ
߱

ܫܩ
ܼିଵ

sinሺ݇ᇱ݈ሻ

cosሺ݇ᇱ݈ሻ 
݅߱
݇ᇱ
ܼିଵ
ܫܩ

sinሺ݇ᇱ݈ሻ
, 

݇ᇱଶ ൌ
߱ଶߩ
ܩ


ߢ
ܩ
߬̂ఝ 

(18) 

where ܼିଵ denotes the impedance of the adjacent element at ݔ ൌ 0. With this 
method, the complex impedance at the magnet position can be formulated. This 
formulation corresponds to the complex ratio of the exciting moment and the 
angular velocity at the excitation position [9]. The resonance frequency and 
damping value can then be found numerically. 
 

 

Figure 4: Physically equivalent representation of the resonator, consisting of 
inner tube, outer tube, connecting piece and magnet. The clamping 
on the left represents the sensor body. 

     The result of this computation is depicted in fig. 5. It shows the semi-analytic 
result of Δ߱ଵଶ as a function of ߟᇱ and ߟᇱᇱ (black dots). The resonance frequency 
without fluid is ݂௦,ଵ, ൌ 5300 Hz, the material damping ܳ ൌ 4000. The surface 
is generated by a linear fit based on eqn. (17a) that is computed with MATLAB 
using the Levenberg-Marquard algorithm. It can be seen that the presumption 
that has been made at the beginning of this chapter holds very well for the 
specified viscosity and elasticity range. The relative error is below 2% for 
ᇱߟ  ԢԢ, the coefficient of determination of the fit is ܴଶߟ5 ൌ 0.998. The same 
result is obtained for the other frequencies, as expected with different factor ࢇ, 
since the participation of the fluid loaded part changes. 
     One can thus state that the results for a single rod can be generalized for 
systems composed of several torsionally vibrating cylinders with partially 
viscoelastic fluid loading. However, the proportionality factor of this general 
form is not known a priori and has to be determined by other means. 
     Finally, knowing the constants ࢇ, eqn. (17) can be transformed so that a 
direct measurement of כߟ is possible via 

ηᇱሺ߱௦,ሻ ൌ
1
2ܽ

ሺΔߜଶ  Δ߱ଶሻ (19) 
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ηᇱᇱሺ߱௦,ሻ ൌ
1
2ܽ

ሺΔߜଶ െ Δ߱ଶሻ 

 
 

 

Figure 5:  Squared value of the shift in resonance frequency in dependence 
on ߟԢ and ߟԢԢ. The points are analytical results from the impedance 
model, the surface is generated by a linear fit of the form ܽ ڄ
ሺߟᇱ െ  .ᇱᇱሻ, according to eqn. (17)ߟ

4 Summary and conclusion 

The method presented here allows a practical and easy continuous measurement 
of the viscoelastic parameters of complex fluids. In consequence of the design 
the material exerts continuous vibrations. Since the measurement principle 
enables the use of several vibration modes, one is thus able to use several 
frequencies for the measurement. Therefore the sensor is able to detect the 
frequency dependence of the fluid parameters, but with the limitation to the 
resonance frequencies. On the other hand, the occurrence of continuous 
vibrations leads to very complex sensor equations that cannot be solved 
explicitly.  
     In this work it has been shown that it is possible to reduce the analytical 
description of the influence of a viscoelastic solid on a combined torsional rod 
structure to easy linear equations, which allows to directly extract כߟ from the 
shift in resonance frequency and change in damping  
     These equations contain only one unknown parameter, which is dependent on 
the material and geometric properties of the structure. It can be described as a 
sensor constant that has to be found before using the sensor. Due to the fact that 
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only one constant is needed per vibration mode, the determination of this 
constant can be executed by a calibration with fluids of either constant viscosity 
or elasticity. Newtonian calibration fluids (ߟᇱᇱ ൌ 0ሻ are therefore well suited to 
provide the sensor constants. First experiments have shown that these theoretical 
results are valid for Newtonian Fluids. Further experiments have to be conducted 
with viscoelastic fluids. 
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