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Abstract

In the present paper a three-dimensional numerical code for simulation of porous
media flow is presented which is based on the Boundary Element Method (BEM).
The most general mathematical model is used to describe momentum, energy and
solute transport in porous media which are based upon the general Navier–Stokes
equations valid for the pure fluid flow. The developed numerical algorithm enables
detailed investigation of the fluid flow together with heat and solute transfer under
various conditions given with different governing parameters, e.g. thermal and
solutal Rayleigh numbers, Darcy number, Lewis number, buoyancy coefficient. In
the paper the effect of different governing parameters on the rate of heat, solute and
momentum transfer are investigated. Under a certain range of parameters, complex
flow patterns occur which exhibits the importance for us to investigate the problem
in three dimensions.
Keywords: porous medium flow, simultaneous heat and solute transport, Boundary
Element Method, Brinkman-extended Darcy formulation.

1 Introduction

Transport phenomenon in porous media is characterized with complex interactions
between solid matrix and a moving fluid and has been motivated by a broad
range of engineering applications including environmental, industrial, agricultural
applications, e.g. contaminant transport through water saturated soils, ground
water pollution, water movement in geothermal reservoirs. Diverse engineering
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applications have motivated scientific community to find efficient models and
approaches to simulate fluid flow and transport processes in porous media.

Different analytical, numerical, as well as experimental studies can be found
in the literature where simultaneous heat and solute transfer in porous media
is simulated. Mainly, there are two configurations on which the convective
flow have been studied. The first example is horizontal porous layer which is
subjected to vertical temperature and concentration gradients where primarily
the critical conditions for the onset of convective motion on the basis of linear
stability analysis are considered and can be found in [1–3]. The second possible
configuration is a vertical cavity filled with porous media where the vertical
walls are maintained at different values of temperature and concentration. For
this configuration two types of examples are possible; the resulting thermal and
concentration buoyancy forces can aid or oppose each other. There are several
published studies considering both examples, e.g. [4–7].

Only a few studies exist which consider three-dimensional analysis of fluid flow
and simultaneous heat and solute transfer in porous enclosure. First study of this
kind, where the problem of double-diffusive natural convection in porous cavity
due to opposing buoyancy forces was considered, was published by Sezai and
Mohamad [8]. Their results reveal that for the certain parameter ranges the flow
structure becomes three-dimensional with second flow formation that can not be
captured with two-dimensional models. In addition, Mohamad et al. [9] published
three-dimensional study of the problem where the effect of lateral aspect ratio is
studied.

In the present paper a problem of double-diffusive natural convection in porous
media for three-dimensional geometry is studied using the BEM solver. At the
beginning the general mathematical model based on the macroscopic Navier–
Stokes equations is given. In addition, the numerical method is briefly outlined.
The obtained numerical results are validated with comparison with other numerical
results available in the literature. Furthermore, the influence of some governing
parameters on the convective motion in porous enclosure are analyzed, focusing
on the situations where the flow may become three-dimensional.

2 Mathematical model

The present work refers to a problem of double-diffusive natural convection in
a three-dimensional cavity, fully filled with fluid saturated porous medium. The
mathematical model is based on the conservation laws for mass, momentum,
energy and species concentration which primarily describe the pure fluid flow and
are written at the microscopic level, in general. Since the geometry of porous media
is irregular and complex, the conventional fluid mechanics can not be used to
describe what happens in every point of the fluid-solid matrix. In order to describe
fluid flow in porous media on a global level and to simplify the mathematical
description, all flow quantities of interest are volume-averaged which is amenable
to theoretical treatment. The laws governing the macroscopic variables are derived
from the standard equations obeyed by the fluid by spatial approach where the
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macroscopic variable is defined as an appropriate mean over a sufficiently large
representative elementary volume (REV). The length scale of the REV has to
be much larger than the pore scale and considerably smaller than the length
scale of the macroscopic flow domain. The detailed averaging procedure for all
governing equations is given in [10]. The macroscopic governing equations in non-
dimensional form can be written as:

�∇ · �v = 0, (1)
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where the following volume averaged and dimensionless variables for velocity,
position vector, time, temperature, concentration and gravitational acceleration are
used respectively:

�v → �v

v0
, �r → �r

L
, t → v0t

L
, T → T − T0

ΔT
, C → C − C0

ΔC
, �g → �g

g0
. (5)

v0 is characteristic velocity and is given as v0 = λf/(ρcp)fL, where λf is fluid
thermal conductivity, (ρcp)f is fluid heat capacity, ρ is density, cp is specific heat
at constant pressure and L characteristic length. This formulation for characteristic
velocity is common for buoyant flow simulations. Furthermore, T0 and C0

are characteristic temperature and concentration, ΔT and ΔC characteristic
temperature and concentration differences, while g0 = 9.81m/s2. Further
parameters in governing equations (1)-(4) are: φ porosity, p pressure, σ heat
capacity ratio σ = (φ cf +(1−φ)cs)/cf , where cf = (ρcp)f and cs = (ρcp)s are
heat capacities for fluid and solid phases respectively, λe is the effective thermal
conductivity of the fluid saturated porous media given as λe = φλf + (1 − φ)λs,
where λf and λs are thermal conductivities for fluid and solid phases respectively.
Moreover, following non-dimensional numbers are used:

• RaT , thermal fluid Rayleigh number RaT = gβTΔTL3/να, where βT is
volumetric thermal expansion coefficient, ν is kinematic viscosity and α is
thermal diffusivity given as α = λf/cf ,

• Pr, Prandtl number Pr = ν/α,
• N , buoyancy coefficient N = RaS/RaT , where RaS is solutal Rayleigh

number RaS = gβCΔCL3/να, where βC is volumetric expansion
coefficient due to chemical species,

• Eu, Euler number Eu = ρv2/p,
• Da, Darcy number Da = K/L2, where K is permeability of porous media,
• Le, Lewis number Le = α/D, where D is mass diffusivity.
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The momentum equation (2) is coupled with energy (3) and species equation
(4) due to the buoyancy term, which is described with the Oberbeck Boussinesq
approximation, considering the fact that the fluid density depends only on
temperature and concentration variations:

ρ = ρ0(1 − βT (T − T0)− βC(C − C0)). (6)

The momentum equation (2) is also known as the Darcy-Brinkman equation,
with two viscous terms e.g. Brinkman viscous term (third on the r.h.s) and Darcy
viscous term (fourth on the r.h.s.). The Brinkman viscous term is analogous to
the Laplacian term in the classical Navier–Stokes equations for pure fluid flow. It
expresses the viscous resistance or viscous drag force exerted by the solid phase
on the flowing fluid at their contact surfaces. With the Brinkman term the non-
slip boundary condition on a surface which bounds porous media is satisfied, as
reported in [11].

2.1 Velocity-vorticity formulation

Introducing the velocity-vorticity formulation to the governing set of equations
the computational scheme is partitioned into kinematic and kinetic computational
part. The kinematics is governed with the velocity equation which is obtained from
the mass conservation law (1). It is a vector elliptic partial differential equation of
Poisson type and links the velocity and vorticity fields for every point in space and
time and can be stated as [12]:

∇2�v + �∇× �ω = 0, (7)

where �ω is vorticity vector, defined as the curl of velocity field �ω = �∇ × �v. The
kinetics is governed by the vorticity transport equation, which is derived by taking
the curl of the momentum equation (2), which reads as:

φ
∂�ω

∂t
+ (�v · �∇)�ω = (�ω · �∇)�v − PrRaTφ

2�∇× (T +N C)�g+

Prφ∇2�ω − Pr

Da
φ2�ω.

(8)

The left hand side of equation (8) represents the advective vorticity transport
and the terms on the right hand side are the vortex twisting and stretching term,
the buoyancy term, the diffusion term and the Darcy term. The partial differential
equations (7), (8), (3) and (4) represent the nonlinear system of equations for the
unknown velocity, vorticity temperature and concentration fields.

3 Numerical method

For the solution of the governing equations a combination of single-domain and
sub-domain BEM will be applied. All governing equations are written in an
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integral form which is obtained by using the Green’s second identity for the
unknown field function and for fundamental solution u� of the Laplace equation:
u� = 1/4π|�ξ − �r|. The integral form of all governing equations is given in [12].

The system of equations is solved according to known Dirichlet or Neumann
type boundary conditions for velocity, temperature and concentration. The no-slip
boundary condition on all solid walls are used and the values of temperature and
concentration or their fluxes are prescribed. Domain velocity values are calculated
from kinematics equation (7), domain temperature values from energy equation
(3) and domain concentration values from species equation (4). The boundary
conditions of vorticity values, which are needed to solve the vorticity transport
equation are unknown at the beginning and are calculated as a part of the algorithm.
The numerical algorithm contains following steps:

1. Porous media properties are determined.
2. Vorticity values on the boundary are calculated by single-domain BEM from

the kinematics equation (7).
3. Velocity values within the domain are calculated by sub-domain BEM from

the kinematics equation (7).
4. Temperature values within the domain are calculated by sub-domain BEM

from energy equation (3).
5. Concentration values within the domain are calculated by sub-domain BEM

from the concentration equation (4).
6. Vorticity values within the domain are calculated by sub-domain BEM from

the vorticity equation (8).
7. Check convergence. All steps from 2. until 6. are repeated until all flow

fields achieve the required accuracy.
The numerical algorithm for simulation of three-dimensional fluid flow and heat

transfer by a combination of single- and sub-domain BEM, was developed by
[13, 14] and was adopted for simulation of flow and heat transfer in porous media
by [12]. The solver has been, furthermore, adopted for simulation of simultaneous
heat and solute transfer in porous media.

4 Results and discussion

The developed numerical scheme is used to investigate the steady three-
dimensional flow patterns and the resulting heat and solute transfer within a cubic
enclosure where the opposite walls are maintained at different temperature and
concentration values while the rest of the walls are adiabatic and impermeable
as shown in Fig.(1). The temperature and concentration gradients which occur
near the vertical walls induce density differences in the fluid and subsequently the
appearance of thermal and solutal buoyancy forces, respectively.

The overall heat and solute transfer under different conditions were studied
focusing on the influence of different values of Darcy number (Da =
10−6 . . . 10−1) and buoyancy coefficient (N = 2 . . . − 2) at fixed values of RaP
and Le. The results are expressed in terms of average Nusselt and Sherwood
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Figure 1: Geometry of the problem.

numbers which present the wall heat and species flux and are given as:

Nu =

∫
Γ

�∇T · �ndΓ , Sh =

∫
Γ

�∇C · �ndΓ. (9)

All calculations were performed on a nonuniform mesh with 20 × 8 × 20
subdomains and 28577 nodes. Subdomains are concentrated towards the hot and
a cold walls. The convergence criteria for all field functions was 10−5, under-
relaxation of vorticity, temperature and concentration values ranging from 0.1 to
0.01 was used. The results for double-diffusive natural convection for different
values of governing parameters are firstly compared with solutions from the
study [9] and are presented in Tables 1 and 2. In this case the solutal and thermal
buoyancy forces are opposing each other, which is given with N < 0. The value
of Prandtl number is Pr = 10 and the porous medium properties are φ = 1 and
σ = 1. The numerical results in the reference study are obtained using the principle
of finite volume method. From the results it may be seen that the agreement with
reference solutions is good for all different values of governing parameters.

Due to boundary conditions considered in this study where the left-hand side
wall is maintained at higher temperature and concentration values as the right-
hand side wall, the resulting flow direction due to thermal buoyancy forces is
clockwise, while the direction of the solutal buoyancy forces depends on the sign
of the buoyancy coefficient. In case when N < 0, the direction of solutal flow is
counterclockwise and is opposing the thermal flow.

Furthermore, the influence of Darcy number and buoyancy coefficient on overall
heat and mass transfer in the cavity were investigated. The results of average
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Table 1: Nusselt and Sherwood number values for 3D natural convection in a cubic
enclosure for RaP = 10, Da = 10−6, N = −0.5 and different values of
Lewis number. The reference results are from the study of [9].

RaP = 10; Da = 10−5; N = −0.5

Le = 1 Le = 10 Le = 100

Nu
Present 1.019 1.039 1.048
Ref. 1.0198 1.0404 1.0424

Sh
Present 1.019 2.450 4.743
Ref. 1.0198 2.4467 4.7511

Table 2: Nusselt and Sherwood number values for 3D natural convection in a cubic
enclosure for Rap = 1, Da = 10−6, Le = 50 and different values of
buoyancy coefficient. The reference results are from the study of [9].

RaP = 1; Da = 10−6; Le = 50

N = −0.2 N = −0.5

Nu
Present 1.0005 1.0002
Ref. 1.0006 1.0003

Sh
Present 1.9627 1.5524
Ref. 1.9517 1.5495

Nusselt and Sherwood number values at fixed values of porous Rayleigh number
RaP = 100 and Lewis number Le = 10 and various Da and N are shown
graphically in Figs 4 and 5. In case when N = 0 the only acting force is thermal
buoyancy force. With any increase of N in positive direction, the Nusselt and
Sherwood numbers increase at any value od Darcy number. On the other hand,
both the Nusselt and Sherwood numbers decrease upon increasing the magnitude
of N in the negative direction between −0.5 > N > −1.5 at any value of Darcy
number. The opposing buoyancy effect due to solutal variations become dominant
in this case which slow down the thermal buoyancy force. For N = −1.0, Nu
value is close to the diffusive solution (Nu ≈ 1) which is a result of equal intensity
of thermal and solutal effects with opposing directions. With further increasing N
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Figure 2: Nusselt number values for different Da and N .

Figure 3: Sherwood number values for different Da and N .

in negative direction, e.g. N < −1.5, Nu and Sh values start to increase, in this
case the mass and heat are transferred due to dominant solutal buoyancy force.

The onset of double-diffusive natural convection in the chosen geometry induces
the main vortex in the x − z plane, which is the reason the plane y = 0.5 is
chosen to study temperature, concentration and velocity profiles. In Figs   4 and 5
the temperature and concentration profiles for RaP = 100, Le = 10, Da = 10−3

and different values of buoyancy coefficient are presented. The highest temperature
and concentration gradients can be observed near to the hot and the cold walls. In
case, when N = −1.5 and N = −2, the profiles are close to the linear profile,
the governing heat and mass transfer mechanism in this case is conduction. This
phenomenon can be clearly seen from the Fig. 6 and 7, where the temperature
and concentration fields are depicted. With decrease of N the isotherms and
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Figure 4: Temperature profiles at y = 0.5 and z = 0.5 for RaP = 100,
Da = 10−3, Le = 10 and various N .

Figure 5: Concentration profiles at y = 0.5 and z = 0.5 for RaP = 100,
Da = 10−3, Le = 10 and various N .

iso-concentration lines become straight which clearly shows that the convective
motion is diminished.

In addition, the streamlines for fix values of RaP = 100, Le = 10, Da = 10−3

and different values of buoyancy coefficient are depicted in Fig. 8. It is obvious that
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Figure 6: Temperature contour plots on the Y = 0.5 plane for RaP = 100,
Da = 10−3, Le = 10 and N = 2 (left), N = 0 (middle left), N = −1
(middle right) and N = −2 (right).

Figure 7: Concentration contour plots on the Y = 0.5 plane for RaP = 100,
Da = 10−3, Le = 10 and N = 2 (left), N = 0 (middle left), N = −1
(middle right) and N = −2 (right).

Figure 8: Streamlines on the Y = 0.5 plane for RaP = 100,Da = 10−3, Le = 10
and N = 2 (left), N = 0 (middle left), N = −1 (middle right) and
N = −2 (right).

the fluid is moving faster along the hot and cold walls, where the streamlines are
closely spaced and the velocity gradient is high. With decrease of N from N < −1
the flow direction starts to turn in other direction and between −1 > N > −1.5
the velocity maximum starts to increase, the thickness of corresponding boundary
layer again starts to decrease. It can be clearly observed from the flow field in
Fig. 8 that the flow direction is reversed due to downward species buoyancy which
dominates the flow as N becomes negative. Larger absolute values of buoyancy
ratio result in stronger convective motion which enhances heat and mass transfer
in the cavity.
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From Fig. 9 where the iso-surfaces of absolute value of y velocity component
are plotted can be clearly observed that the 3D nature of the phenomena occurs
in the corners of the cubic cavity. Due to the fact that the flow field is driven by a
large temperature and concentration difference between two opposite walls which
causes 2D vortex in the y plane, the flow structure in the enclosure remains mainly
two-dimensional. However, with increase of absolute values of N the movement
perpendicular to the plane of the main vortex becomes more apparent.

Figure 9: Isosurfaces for RaP = 100, Da = 10−3, Le = 10 and N = 2 (left),
N = −1 (middle) and N = −2 (right).

5 Conclusion

Three-dimensional study of combined heat and solute transfer in porous enclosure
is investigated numerically using the algorithm based on the BEM. The velocity-
vorticity formulation of governing set of equations was obtained which is based
on the volume-averaged macroscopic Navier–Stokes equations. The numerical
results for different values of governing parameters show good agreement to
some available published results, which states the correctness of the obtained
numerical scheme. Further study is focused on the influence of a limited number
of dimensionless parameters, namely the Darcy number and buoyancy coefficient.
The results state specific behavior of double-diffusive flow in porous media; the
heat and mass transfer strongly depend on a Darcy number while the increase
of the absolute value of buoyancy coefficient enhances the overall heat and mass
transfer, in general. In the range when 0 > N > −2, the thermal and solutal
buoyancy effects start to oppose each other, which causes that the flow starts to
flow in reversal direction. Three-dimensional nature of the flow becomes more
apparent in cases when the absolute value of N is increasing, which is specially
obvious in the corners of the cubic cavity.
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