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Abstract 

A new class of photomechanical liquid crystal elastomers (LCE) has emerged, 
which generate large bending deformation and fast response times that scale with 
the resonance of the elastomer films. These films are classified as glassy 
elastomers (modulus ~1GPa) and are doped with photoresponsive azobenzene 
liquid crystals to provide novel light induced deformation. These materials are 
promising for developing propulsions systems for insect size aircraft and 
microfluidic devices, for example. The photomechanical efficiency of these 
materials in a fluid medium is of high interest to understand the performance 
attributes of this class of smart materials. Here, a numerical study is presented 
that describes the photomechanical structural dynamic behaviour in a fluid 
medium. We simulate the oscillation of photomechanical cantilevers excited by 
light while simultaneously modeling the effect of the surrounding fluid at 
different ambient pressures. The photoelastomer structure is modeled as a thin 
plate and coupled with photomechanical constitutive relations to compute the 
transverse displacement. For the fluid, three dimensional unsteady 
incompressible Navier-Stokes equations using the arbitrary Lagrangian Eulerian 
(ALE) form are used to consider dynamic mesh movement on a local mesh and 
boundary conditions on the elastomer material interface. The fluid equations are 
discretized using a conventional finite volume method (FVM) on a structured 
curvilinear coordinate system. Numerical examples are given which provide new 
insight into photomechanical material efficiencies in a fluid medium as a 
function of ambient pressure. 
Keywords:  liquid crystal elastomer, azobenzene LCN, arbitrary Lagrangian-
Eulerian, artificial compressibility, fluid-structure interaction. 
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1 Introduction 

Liquid crystal elastomers (LCEs) are active materials that combine the 
characteristics of elastomers with liquid crystals [1]. These characteristics result 
in an interesting coupling between the liquid crystal active medium and 
deformation of the polymer network that arises from a variety of external stimuli. 
The change of the internal liquid crystal order can be driven by external stimuli 
such as heat, light, pH, polarity, humidity, and mechanical loads which provides 
interesting opportunities for developing smart material actuators and sensors.   
     Of particular interest is azobenzene LCNs (azo-LCNs) which can convert 
light energy into mechanical work on a polymer network, which were first 
considered by Lovrien [2] in 1967. Laser controlled active polymers provide a 
unique adaptive material for micro air vehicles, microfluidic systems, and 
adaptive robotic skins. These materials consist of azobenzene liquid crystals that 
act as molecular motors and do work on the host polymer network. During light 
stimuli, a complex photoisomerization process (light induced liquid crystal 
structure transformations) induces bending of the photoelastomer film due to 
light absorption and strain gradients through the film thickness. Figure 1 
illustrates an azobenzene LCE film where the rod-like molecules undergo a trans 
to cis isomerization when they absorb photons. The cis conformation results in 
the shape change of the molecule from rod-like to bent, which changes the 
nematic ordering. Two liquid crystal transformations are believed to occur: 1) 
trans-cis photoisomerization (rod to kinked molecular structure change) from UV 
light which produces order-disorder behaviour in monodomain specimens and 2) 
trans-cis-trans (order-disorder-reorder) process which includes a rotation of the 
rod shaped liquid crystals due to polarized light with a wavelength of 
approximately 442 nm. The latter photoisomerization process is motivated by 
surface relief grating experiments and recent free standing experiments [3, 4].  
     These materials are promising for developing propulsions systems for insect 
size aircraft and microfluidic devices. Therefore, photomechanical efficiency of 
these materials in a fluid medium is of high interests to understand performance 
attributes of this class of smart materials. The objective of this study is to 
develop a computational method for the fluid-structure interaction (FSI) analysis 
of fast photomechanical liquid crystal elastomers driven by light. Here, a 
numerical study is presented that describes the photomechanical structural 
dynamic behaviour in a fluid medium.  
 

 

Figure 1: The schematic of azobenzene LCE showing a photostrain.  
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     We simulate the oscillation of photomechanical cantilevers excited by light 
by simultaneously modeling the effect of the surrounding fluid at different 
ambient pressures. To this end, an efficient and stable FSI model is developed to 
address the interactions between the incompressible fluid and the 
photomechanical elastomer during light stimuli. Light absorption is modelled by 
assuming isotropic absorption characteristics, which results in an exponential 
attenuation of the optical intensity through the thickness of the film known as the 
Beer-Lampert law [5]. 
     The application of numerical methods to the solution of a coupled field 
problem results in a system of nonlinear algebraic equations, which may be 
resolved according to a partitioned approach in this study [7–9]. These methods 
are found to be very practical because they allow the modularity of well 
developed computational techniques to be retained on each physical domain. 
This work adopts a partitioned, boundary-fitted arbitrary Lagrangian-Eulerian 
(ALE) approach to couple the fluid and the photomechanical solid. The solid 
structure is resolved in a Lagrangian description by using cubic B-spline shape 
functions and a 2nd order implicit Newmark central scheme for time integration 
in order to accurately model the photomechanical bending. For the fluid domain, 
three dimensional unsteady incompressible Navier-Stokes equations using the 
arbitrary Lagrangian Eulerian (ALE) form are numerically implemented along 
with kinematic boundary conditions to ensure compatibility at the interface. The 
approach also includes geometric conservation on the deforming fluid domain to 
improve numerical accuracy. The fluid equations are discretized using a 
conventional finite volume method (FVM) on structured curvilinear coordinate 
system. For the movement of the computational mesh, an adaptive structured 
mesh redistribution method (ASMRM) is introduced here and proper monitor 
functions are suggested to obtain an optimal grid distribution on a complicated 
geometry with non-uniformly distributed grid points [10]. Numerical examples 
are given which provide new insight on photomechanical material efficiencies in 
a fluid medium as a function of ambient pressure. The assessment of ambient 
pressure on photomechanical efficiency is motivated by recent experimental 
results that show significant differences in light induced flapping behaviour [4].   

2 Computation of a photostrain in azo-LCN fueled by light 

The photoactuated LCE is modelled as a photomechanically coupled, isotropic 
thin film. Light attenuation through the film thickness results in an exponential 
attenuation of the optical intensity and subsequently, photomechanical bending 
[5]. By assuming isotropic absorption, light attenuation is governed by   

 dhzeIzI /)2/(
0)(   (1) 

where 0I  is the light at the top surface and d  is absorption coefficient. As 

photons are absorbed, the rod-like molecule structure undergoes an 
isomerization. This transition results in a contraction or expansion of the 
photoelastomer material. In the constitutive model that couples light and strain,  
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the photostrain is assumed to be proportional to the optical intensity. This 
photostrain is also assumed to be volume-conserving with in-plane components 
given by 
 

  T
ph

ph
ij

z
z  cossin6)2cos(31)2cos(31

4

|cos|)(
)(   (2) 

 

where   is the angle between the light polarization and the nematic axis of the 
trans azo-benzene liquid crystals. Following Eq. (1), the thickness dependence is 

defined by ]/)2/(exp[)( dhzz ps
ph    where ps  is the strain at the top 

surface ( 2/hz  ). In all subsequent analysis, 0 , and Eq. (2) simplifies to  
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     Dunn developed an equivalent bilayer model to facilitate finite element 
implementation [6]. The photostrain driven by light is only defined in layer 1 
according to  
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     Figure 2 shows the schematic of exponential attenuation of the optical 
intensity through the plate thickness and the configuration of bilayer model. 
Through the force and moment valance relations, two unknowns are analytically 
calculated, which are given by [6] 
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     These constitutive relations are coupled with elasticity and structural dynamic 
bending equations in the following section.  
 
 
 

 

Figure 2: Exponential attenuation of the optical intensity through the 
thickness of the plate and bilayer model. 
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3 Structural dynamic-photoelastomer plate solver 

3.1 Photoelastomer plate governing equations 

The governing equations for a thin rectangular photomechanical plate can be 
determined by balancing forces and moments and coupling the balance relations 
to elasticity and photomechanical coupling described in the preceding section. In 
this study, small displacements are assumed which results in decoupled 
transverse and in-plane displacements. The resulting transverse displacement 
plate equation is expressed for a plate of length l , width d , and thickness h  as 
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where w  is the displacement along the z-direction, nf  is the external pressure, 

s is the density and the moment components are , ,  and x y xyM M M which 

include elastic , damping, and photomechanical induced moments. The moment 
equations are defined by 
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where the constitutive relations are given by  
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where E is Young’s modulus,   is the Poisson’s ratio, and c  is the Kelvin-
Voigt damping coefficient. The strain rates are denoted by xx  and yy  for this 

stress component. Similar relations exist for the stress components yy  and xy ; 

see Smith [11] for details.  
     The plate is assumed to have a fully clamped edge condition at 0x  and free 
boundary conditions along all other sides. Physical values used for the elastic 
characteristics of the photoelastomer film are 31000 / ,s kg m  0.33,   

9 22 10 / ,E N m   and 42.5 10c E  . 

3.2 Numerical methods 

In this study, we use cubic B-splines to the construct approximating subspace. 
Equation (6) can be expressed as the following the weak model formulation.  
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where   in the space of test functions is given by 
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     To formulate approximate solutions based on cubic B-splines, the domain is 
partitioned equally, )8,8(),( yx NN . To accommodate the essential boundary 
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which are modified to ensure that j V   for 1,,1  Nj   where ˆ ( )j x is a 

standard cubic B-spline. Using the definition (11), we define modified cubic 
spline basis functions ( )m x   and ( )n y  on the intervals ],0[ l  and ],0[ d . 

Approximate displacements have the representation given by  
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     Substitution of eqn (12) into eqn (9) yields the vector-valued system  
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the reference [11].  The damping matrix Q  is constructed as 42.5 10 Q K to 
match the damping characteristic of the LCE film.    
     The equation is advanced by means of a Newmark time integration scheme in 
conjunction with a Newton-Raphson iterative solution procedure [9]. 

4 Unsteady incompressible fluid flow solver 

4.1 Equations of a fluid flow 

The fluid governing equations are the nonlinear time-dependent incompressible 
Navier-Stokes equations of a laminar, constant viscosity flow without body 
forces. Introducing the artificial compressibility to connect pressure with a 
continuity equation [12], the equations of motion of the fluid can be compactly 
written in generalized curvilinear coordinate system as  
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where ]1,1,1,0[diagp I ,  ],,[],,[ 321 zyxxxx   and ],,[],,[ 321    are 

the Cartesian coordinates and the computational coordinates, respectively, t  and 
 are the physical and the pseudo time, respectively, p  is the static pressure 

divided by the density, ku are the Cartesian velocity components, 

)( k
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uU    are the contravariant velocity components and k

xm
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metrics of the geometric transformation, k
t  are the mesh velocities, J is the 

Jacobian of the geometric transformation, klg is the contravariant metric tensor 

given as l
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 are the inviscid fluxes, k
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are the viscous fluxes.  

     Due to the fact that different ambient pressures are studied to quantify its 
influence on photomechanical bending dynamics, a correlation between the 
Knudsen number and viscosity is introduced. The viscosity is directly dependent 
upon the pressure and does change with the Knudsen number, since a high Kn  
means that the gas experiences very few collisions and that the flow is not 
viscous anymore. In this study, a well-known dynamic viscosity model derived 

by Veijola et al. [13] is used, ]638.91/[ 159.1Knfe    where 25 /1082.1 mNsf
  

is the dynamic viscosity at ambient condition. The Knudsen number can be 
simply given by )/)(/(/ eambamb ppKn    where  is the characteristic 

length (i.e., length of the cantilever) and the subscripts e  and amb  denote the 
condition of interest and the ambient condition, respectively. The density is 
determined by the ideal gas law given by ambee RTp / . 

4.2 Numerical methods for the fluid flow 

To implement the time evolution of the resulting hyperbolic-parabolic system 
(14), the physical time derivative is discretized using a second-order backward 
difference method and the pseudo-time derivative is discretized by an implicit 
backward finite difference method. The diffusion terms are evaluated by the 
standard second-order central finite difference scheme whereas the inviscid 
terms are computed by the flux vector splitting method in conjunction with van 
Leer’s MUSCL formulation for high order spatial accuracy [14]. The implicit 
approximately factored scheme of Beam and Warming (AF-ADI) is incorporated 
to solve a system of block tri-diagonal matrix [15, 16]. 

5 Grid movement technique 

5.1 Adaptive structured mesh redistribution method 

An adaptive structured mesh redistribution method (ASMRM) is used to make a 
moving mesh for a fluid part [10], which is given by  
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where    represents the pseudo time and ijg and ijg  denote contravariant and 

covariant metric tensors, respectively [10].  The monitor functions, m , are used 

to control the spacing and orientation of the grid. Based on the initial mesh 
configuration and boundary point distribution, the monitor functions are 
determined by  

 ,/22
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and )( NML  denote the mesh sizes in the  - ,  - and  - directions, 

respectively.  

6 Numerical fluid-structure coupling scheme 

6.1 Block-Gauss-Seidel method 

Following Farhat and Lesoinne [8], a staggered solution procedure with full 
convergence subiteration at each time step is used to ensure strong coupling of 
the partitioned fluid and structure fields. As shown in Fig. 3, from the mesh 
information ( nu  and nu ), new mesh information at time level (n+1/2) is 

obtained. This information is used for the flow computation at time (n+1/2) in an 
implicit manner. The pressure field on the interface is extracted and transferred 
into a structural code as an external pressure. The structural system advances 
using the second-order time accurate scheme in an implicit manner. When 
implemented in conjunction with the implicit dual time stepping scheme of the 
fluid solver and the implicit Newmark/Newton-Raphson scheme of the structural 
solver this subiterative approach is particularly attractive as it enables a large 
physical time step to be applied without impairing the long term stability of the 
coupled solution [8, 9].  
 

 

Figure 3: Numerical fluid-structure coupling procedure. 
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6.2 Geometric conservation law 

In time-dependent deforming meshes, a discrete Geometric Conservation Law 
(dGCL) that is similar in its principle to the GCL condition first mentioned by 
Thomas and Lombard [17] must be satisfied to eliminate metric cancellation 
errors and to ensure freestream preservation. This can be derived from the scalar 
mass conservation equation.  
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in the fluid domain. In order to satisfy the GCL with a second-order time 
accurate scheme, the following discretizations are used [8].  
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with given initial conditions 0u  and 0u .  

     From Eq. (23), nn xu  and nn xu   are automatically satisfied on the 

interface boundary between the solid and the fluid. Finally, the Jacobian is 
updated by the following equation.  
 
 1/ 2 1/2(1 / ) (1/ ) ( , , , , , , )n n n k k k

x y zJ J tR x y z J          (24) 

 
where ( ) /k k

tR     . The residual R  is discretized with the same method as 

the flow equations of Eq. (14). 

7 Results and discussions 

7.1 Flow induced vibration of a elastic cantilever  

The first example is chosen to demonstrate the ability of the numerical model to 
treat complex flow-structure interaction problems representing small to moderate 
bending deformations with no light stimulus present. Geometry, boundary 
conditions, and the material parameters of the fluid and structure are given in 
Ref. [9]. The mesh size used is )101,3,141(),,( zyx NNN . The time step used 

here is 31012.1 t . 30 sub-iterations are performed at every physical time 
step to obtain converged values. Figure 4 shows instantaneous mesh 
configuration of the FSI and the displacement at the tip of the cantilever in time. 
Figure 5 represents instantaneous pressure and streamwise velocity contours. As 
shown in Table 1, very good agreement with results in references [9, 18] is 
obtained from the simulation.  
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Figure 4: Instantaneous mesh configuration and displacement at the tip in 
time. 

  

Figure 5: Instantaneous pressure and streamwise velocity contours. 

Table 1:  Comparison of current results with those in the literature.  

Author Period of oscillation T (s) Tip deflection maxd (m) 

Wall [18] 0.31-0.36 1.12-1.32 
Wood et al. [9] 0.32-0.36 1.10-1.20 
Current work 0.32 1.24-1.34 

7.2 Effect of the surrounding fluid at different ambient pressure  

Figure 6 represents the physical model and boundary conditions used for the 
photomechanical fluid-structure computation. To simplify the problem, we 
perform two dimensional fluid-structure interaction computations. All mesh 
configurations are the same as the validation problem described above. All the 
lengths are re-sized to match the length of the LCE film of interest. Since there is 
no flow in the computation domain, all the physical values in the regions where 
radiation boundary condition should be applied are simply extrapolated from the 
interior ones. In contrast to the experiments given in [4], a periodic light source 
by a laser having the same frequency as the resonance frequency of the film is 
imposed on the cantilever surface of the film, which will results in a sinusoidal 
photostrain. This simplifies the light-matter boundary conditions due to 
complexities associated with the film bending over 180  through the light 
source. This creates non-Snell like reflection and absorption on the film surface 
and photostrictive bending on both sides of the film during large rotation. The 
external sinusoidal light stimulus approximates this behaviour. The time step  
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Figure 6: Physical model and boundary conditions. 

used here is 41025.1 t . When a time-periodic light source is applied, the 
cantilever starts to oscillate, but its motion would be prohibited by the 
surrounding air. Figure 7 shows oscillation at the tip by the external sinusoidal 
light source in time with respect to pressure variation on three different 
geometric configurations. It is observed that as the geometry increases, the 
damping effect by the surrounding fluid is increased and a phase shift also 
occurred.  
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Figure 7: Oscillations at the tip by the external sinusoidal light with respect 
to the pressure variation.  
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8 Summary and future work 

An efficient and stable FSI model was developed to deal with the interaction 
between the incompressible fluid and the flexible body due to the photo-light 
interactions. We simulated the oscillation of photomechanical cantilevers excited 
by light and examined the effect of the surrounding fluid at different ambient 
pressures and sizes of the film on its motion.  It is shown that the size of the 
photoelastomer is sensitive to the amount of light induced deformation under 
different ambient pressures suggesting different amounts of photomechanical 
work are transferred to the fluid.  
     Ongoing work will extend these results to a fully coupled 3D LCE body 
showing large flexible flapping motion by light to unravel the mechanical and 
aerodynamic physics underlying their interaction. 
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