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ABSTRACT 
The design of water distribution networks (WDNs) usually considers deterministic values of nodal 
water demand, calculated by multiplying the average water demand by an appropriate demand factor, 
which is the same for all nodes. Obviously, changes in the demand factor produce different, yet 
perfectly correlated, demand scenarios. Today’s large availability of high-frequency water consumption 
monitoring allows describing water demand in statistical terms. The traditional deterministic approach, 
characterized by a perfect correlation between nodal demands, leads to an analytical dependency 
between the hydraulic heads in each of the nodes and the total flow entering the network. On the other 
hand, if we consider that the nodal demand is described by marginal probability distributions, 
differently correlated with each other, this result is still valid, but only for the mean. In this work, several 
scenarios have been generated through stratified random sampling (Latin hypercube sampling). The 
nodal water demand is described by Gamma probability distributions whose parameters are related to 
the type and number of users according to suitable scaling laws, derived from historical data sets. The 
results were obtained considering different types of users and different network topologies and 
highlighted the possibility of evaluating the mean function of the nodal hydraulic head vs the total 
entering flow based on the direct acyclic graph (DAG) of the network. Moreover, the dispersion of the 
data around the mean function was found to be dependent on the properties of the network: dimension 
and topological structure. 
Keywords:  scaling laws, water demand scenarios, self-similarity. 

1  INTRODUCTION 
water distribution network (WDN) sizing, calibration, and management largely depend on 
the water demand scenarios considered. When dealing with one of these issues, nodal 
demands are often not known beforehand: they must be measured or estimated. Measuring 
all nodal demands in an existing network is an unaffordable procedure, and not possible in 
the design phase.  
     Traditionally, deterministic water demand scenarios are estimated from annual average 
consumption measurements. These scenarios are properly scaled by a demand factor, 
depending on the size and socio-economic characteristics of the area covered by the WDN. 
Since they derive from a single multiplicative scaling factor, all the scenarios obtained from 
different demand factors are perfectly correlated with each other. 
     Different methods for generating stochastic demand scenarios have been proposed in the 
literature [1], [2], in order to overcome the conceptual limitations of this approach. In 
particular, the one proposed by Magini et al. [1], uses the observation of the scaling properties 
of the statistical moments of the demand probability distributions, deriving from the spatial 
aggregation of water users. 
     The hydraulic response of the network to a demand scenario is characterized by its values 
of pipe flow rates and nodal pressure heads. This highlights the mutual interaction between 
demand, network topology, and characteristics of the pipes. Consequently, this interaction 
allows predicting pressure at each node under given demand conditions. This allows 
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envisaging possible critical issues in some parts of a WDN and accelerating numerical 
procedures in its hydraulic simulation. 
     This work presents some analytical evidence regarding the possibility to identifying the 
hydraulic behaviour of the WDN in stochastically perturbed scenarios with respect to an 
average demand scenario. In particular, the average scenario results to be adequate for the 
hydraulic description of the WDN. Finally, to verify the proposed approach, we propose an 
example on a WDN case from the literature, using synthetically generated stochastic demand 
scenarios. 

2  DEMAND SCENARIOS 
The total flow entering the network and, even more, nodal water demand, represent the most 
uncertain input parameters in the hydraulic modelling of WDNs. The estimation of these 
input parameters differs according to three different conditions: (1) a water-meter dataset is 
available, (2) a dataset measured from a similar system is used, or (3) no measured datasets 
are available. In the last case, the annual average demand scenario is usually considered  
[3], [4]. 
     From this basic scenario, it is also possible to obtain peak demand scenarios, which are 
useful to determine production and distribution capacity and customers’ metering in an 
existing network. Peak flow is a key factor for this purpose. In the absence of data, the usual 
approach to estimate the peak flow is to consider a peaking factor (PF). The PF is the ratio 
between the maximum water demand recorded in a given time interval and the average annual 
water demand. Increasing the average nodal flow rates by the same factor is equivalent to 
considering the common behaviours of network users and therefore the perfect correlation of 
their water demands. This approach does not allow the identification of the probabilistic 
dispersion of the nodal head that is consequent to the probabilistic dispersion of the water 
demand in the different scenarios.  
     However, internationally the use of the average daily water demand (ADD) and the PF is 
the most widespread method in professional practice. For example, to harmonize the 
European water supply standards, a peak flow probability method – originally used in 
Switzerland – was incorporated into EN 806-3. The American counties also propose this 
methodology, each adopting different peak factors [5]–[7]. 
     However, many recommendations in current design standards have been carried over from 
previous standards unquestioned and without revision. Furthermore, since the genesis of 
these measures is not well documented or understood, disagreement between regional 
methodologies increased.  
     In this paper, we also want to highlight that no scientific evidence confirms that the annual 
average scenario, even when appropriately amplified through the PF factor, is the most 
precautionary scenario for the WDN. 

2.1  Stochastic demand scenarios 

It’s worth pointing out that nodal water demand can greatly influence the model accuracy 
[8]–[10]. The deterministic approach, despite (and due to) its simplicity of use, does not allow 
considering the stochastic component of demand. In fact, water demand consists of a 
deterministic component – linked to the household plumbing fixtures and appliances – and a 
stochastic component linked to the unpredictable behaviour of users. It is necessary that the 
cross-correlation between users’ water demands is considered in the stochastic component, 
in order to estimate the real peak scenario. Therefore, real-time estimation of nodal water 
demand is a major task for the real-time modelling of WDNs. Thanks to the development of 
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smart metering technology, a large amount of measured data has gradually become available 
in recent years. 
     The observation of the scaling properties related to spatial and temporal aggregation of 
water demand measures allowed defining a method for the generation of stochastic demand 
scenarios [1].  
     For this purpose, it is assumed that the statistical moments of nodal demand (mean, 
variance, and cross-correlation) depend on type and number of users according to suitable 
scaling laws [11]. The development of the scaling laws assumes that the demand can be 
described by a homogeneous and stationary process, which implies that the aggregated users 
are of the same type (residential, commercial, industrial, etc.), and that the statistical 
properties of demand are constant over time. 
     The water demand statistical features of the single users are obtained from historical 
datasets and, together with the number of users in each node, represent the main input data 
for scenario generation. The most appropriate probability distribution to represent the nodal 
marginals may depend on the number of aggregated users and derives from historical data. 
In the literature, the most used probability distributions to describe the variability of the 
demand for aggregated users are the Log-normal, Gamma, and Weibull. 
     The complete procedure for scenario generation adopted in the application is detailed in 
Magini et al. [1]. It is based on sampling from the marginal distributions using the Latin 
hypercube sampling (LHS) [12]. In order to respect cross-correlation between nodal demands 
a combination of the NORTA model [13], and the Iman–Conover method [14] is used. The 
LHS is a “stratified sampling” technique that produces a better description of the input 
probability distribution with fewer iterations compared with a simple random sampling. The 
NORTA model is a two-step process, first transforming a multivariate normal vector Z into 
a multivariate uniform vector U, then transforming the latter into the desired input vector. 
The joint distribution of U is a copula, and any joint distribution can be represented as a 
transformation of a copula. To improve compliance with the network-demand correlation 
structure, the restricted pairing Iman–Conover technique is applied to NORTA results. It 
induces rank correlation by shuffling finite-size samples obtained from NORTA. The 
appropriate shuffling is determined by ranking the input samples the same as in a reference 
sample with the desired rank correlation. The demand scenarios obtained represent an 
improvement of the commonly used deterministic ones. In fact, the proposed model can 
generate scenarios in which, given the peculiar characteristics of the users, nodal water 
demand contains the stochastic component. However, empirical analyses of the generated 
scenarios show that the stochastic component is small, compared to the values assumed by 
the average demand. These nodal water demand distributions can be defined as “stochastic 
scenarios”. 

3  THE WATER DISTRIBUTION NETWORK 
A WDN is mainly composed by the pipes transporting water from an inlet with known 
hydraulic head towards the demand nodes. A looped WDN can be represented by a directed 
graph that schematizes its geometric structure, planimetrically and altimetrically, and the 
capacitive characteristics of pipes, i.e., diameters, roughness, and lengths. In accordance with 
the characteristics of the considered WDN, each water demand scenario gives rise to water 
flows in pipes along definite directions, which define the orientation of the arcs of the graph. 
     For any scenario and size of the network, the corresponding oriented graph has no loops, 
as the hydraulic system is governed by the variational principle of minimum energy 
dissipation [15] and respects the uniqueness property of the solution [16]. A structure with 
these properties is called a direct acyclic graph (DAG). 
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     Based on these assumptions, it can be stated that each WDN is characterized by its own 
basic DAG, which is linked to the average demand scenario.  
     The direction of the flows in the pipes varies for each scenario that occurs on a network, 
therefore for each scenario a specific DAG is defined, which can be known solving the 
hydraulic model of the WDN. 

3.1  Water distribution network solvers 

Numerous algorithms have been developed over time for solving the mixed set of linear and 
nonlinear equations governing the steady-state hydraulics of looped WDNs. The different 
approaches can be divided into local approaches (e.g., the Hardy Cross method [17]), which 
deal with one equation at a time, and global approaches, which solve simultaneously all the 
equations. For the second group, it is possible to make use of the Newton–Raphson (NR) 
linearization method or the linear theory (LT) successive approximation method to treat the 
system’s nonlinear equations. One of the most important resolution methods for looped 
networks is the LT introduced by Wood and Charles [18]. Nevertheless, after more than thirty 
years, in the technical and scientific fields, the reference standard for the resolution of 
hydraulic networks is still the method introduced by Todini and Pilati [19], Todini [20] and 
Todini and Rossman [21]. Whichever the numerical solution is chosen, the nodal demand 
scenario represents a critical parameter, from which the response of the network drives. 

3.2  The behaviour of WDNs in deterministic water demand scenarios 

Given a network with 𝑙 loops, 𝑝 pipes and 𝑛 demand nodes, without tanks inside, the set of 
resolutive equations can be expressed for the generic node 𝑖 as follows: 

𝑄௧௧ ൌ  𝑞 ,



ୀଵ

 (1)

 𝑎, 𝑄,ೕ
 𝑞 ൌ 0, 𝑖 ൌ 1,2, … , 𝑛,



ୀଵ

 (2)

 𝛽, 𝑟 |𝑄|ఈିଵ𝑄

 

ୀଵ

ൌ 0, 𝑗 ൌ 1, 2, … , 𝑙. (3)

     This system of equations contains as unknowns only the pipe flow rates 𝑄 and it is 
determined. In the case of networks served by one or more reservoirs having the same 
hydraulic head 𝐻, the value of the hydraulic head 𝐻 at each node 𝑖 can be evaluated as 
follows: 

𝐻 ൌ 𝐻 െ 𝑑𝐻 ൌ  𝛾 𝐿 𝑄|𝑄|ఈିଵ, 𝑖 ൌ 1,2, … , 𝑛



ୀଵ

. (4)

Given a water demand scenario 𝐷 ൌ ሺ𝑞ଵ, 𝑞ଶ, … , 𝑞ሻ, the total inflow 𝑄௧௧ is automatically 
known, so it is possible to define the attenuation coefficient 𝑎𝑐 ൌ 𝑄/𝑄௧௧ of the pipe flows 
and to link the head losses 𝑑𝐻 in eqn (4) to the total flow entering the WDN: 
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𝑑𝐻𝑖 ൌ  𝛾𝐷𝑘
 𝐿𝑘 ቆ

𝑄𝑘

 𝑄𝑡𝑜𝑡

∙ 𝑄𝑡𝑜𝑡ቇ
𝛼

ൌ

𝑝

𝑘ൌ1

 𝛾𝐷𝑘
𝐿𝑘൫𝑎𝑐𝑘 ∙ 𝑄𝑡𝑜𝑡൯

𝛼

𝑝

𝑘ൌ1

. (5)

     In a looped network, given a demand scenario 𝐷, the flow follows many different paths 
to reach the demand node along which the head loss 𝑑𝐻 is the same. For this reason, the 
parameters related to the flow rate can be enclosed by a single invariant parameter 𝑘 at each 
demand node in the various scenarios: 

𝑑𝐻𝑖 ൌ 𝑘𝑖 ∙ 𝑄𝑡𝑜𝑡
𝛼. (6)

     As already mentioned, the reference scenario is the average scenario (subscript m), and in 
a deterministic approach all the other possible scenarios (subscript s) can be obtained by 
multiplying the former by a factor 𝑓. It follows that: 

𝑄,௦ ൌ 𝑓 ∙ 𝑄,, (7)

𝑄௧௧,௦ ൌ 𝑓 ∙ 𝑄௧௧,. (8)

     As a consequence, the head loss is scaled according to a power law: 

𝑑𝐻𝑖,𝑠 ൌ 𝑘𝑖 ∙ 𝑓𝛼 ∙ 𝑄𝑡𝑜𝑡,𝑚
𝛼 ൌ 𝑓𝛼 ∙ 𝑑𝐻𝑖,𝑚. (9)

     This equation shows that any multi-connected network has self-similarity properties 
between the total head losses in each node and an average total entering discharge. Then, for 
any deterministic scenario, the pressure head at each node is known from eqn (9) if the 
solution of the average demand scenario is known. Furthermore, eqn (7) shows that the 
deterministic scenarios are all represented by the reference DAG obtained for the average 
scenario. 

3.3  Behaviour of WDNs in presence of stochastic water demand scenarios 

The discussion just provided remains valid on average in the case that the demand scenarios 
are randomly perturbed with respect to the local average scenario of reference, respecting the 
scaling laws and the cross-correlation.  
     Each stochastic scenario can be compared with the average deterministic scenario 
obtained by considering the same total discharge value introduced into the network. These 
comparisons show that the differences in nodal demands between pairs of deterministic and 
stochastic scenarios are small, compared to the value of the demand. 
     This allows evaluating the trend of the nodal head even in non-deterministic scenarios. 
Moreover, due to the exiguous residual value, the formula proposed by Todini and Pilati [19] 
can be linearized as follows: 

𝐻 ൌ ሾ𝐴21ሺ𝐷11
 ሻെ1𝐴12ሿെ1ሼ𝐴21ሺ𝐷11ሻെ1ሾሺ𝐷11 െ 𝐴11ሻሿ𝑄 െ 𝐴10𝐻0  𝑞ሽ. (10)

     For this purpose, a first-order truncated Taylor expansion is performed on eqn (10): 

∆𝑑𝐻, ൌ ሾ𝐴ଶଵ 𝐷ଵଵ
ିଵ 𝐴ଵଶሿିଵ ∙ ∆𝑞,. (11)

     Consequently, the head loss of node 𝑖 is given by the sum of the result obtained 
considering the related deterministic scenarios and the residual value of the head loss due to 
the stochastic scenario, obtained from the previous linearization. 
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𝑑𝐻, ൌ 𝑑𝐻,௦  ∆𝑑𝐻, ൌ 𝑓ఈ ∙ 𝑑𝐻,௦  ∆𝑑𝐻, . (12)

     The residuals obtained from the comparison between the local mean demands 𝑞,௦ and the 
relative perturbed demand 𝑞, can be considered a random variable of assigned mean 𝜇

 and 
variance 𝜎

ଶ . This random variable ∆𝑞 is linked to the residual of the nodal head ∆𝑑𝐻, by 
eqn (11). For the theory of random variables, the linear combination of random variables 
provides an expression of the expected value and variance for the derived variable. It is 
therefore possible to obtain the statistical parameters of the residual nodal heads by the 
demands’: 

𝐸ሾ∆𝑑𝐻ሿ 
  ൌ ሾ𝐴ଶଵ 𝐷ଵଵ

ିଵ 𝐴ଵଶሿିଵ ∙ 𝐸ሾ∆𝑞ሿ . (13)

𝜎ଶ
∆ௗு ൌ ሾ𝐴ଶଵ 𝐷ଵଵ

ିଵ 𝐴ଵଶሿିଵ ∙ ൛𝑑𝑖𝑎𝑔ൣ𝜎ଶ
∆ௗ

൧  𝑐𝑜𝑣ൣ∆𝑄, ∆𝑄൧ൟ ∙
∙ ሼሾ𝐴ଶଵ 𝐷ଵଵ

ିଵ 𝐴ଵଶሿିଵሽ் 
(14)

     Considering eqns (13) and (14), it is possible to define the approximate values of the nodal 
head losses and of the pipe flow due to the random realization of a stochastic scenario by 
assigning only a total inflow. For stochastic water demand scenarios, the equations proposed 
by Todini and Pilati [19] results as: 

𝐻, ൌ 𝐻 െ 𝑑𝐻,௦  ሾ𝐴21ሺ𝐷11ሻെ1𝐴12ሿെ1 ∙ 𝐸ሾ∆𝑞ሿ  ሼሾ𝐴21ሺ𝐷11ሻെ1𝐴12ሿെ1ሽ2 ∙
∙ 𝜎ଶ

∆ௗு  2 ∙ ሾ𝐴21ሺ𝐷11ሻെ1𝐴12ሿെ1 ∙ 𝑐𝑜𝑣ൣ∆𝑄, ∆𝑄൧.
(15)

𝑄, ൌ 𝑄, െ ൫𝐷11,𝑚
 ൯

െ1
൫𝐴11,𝑚 ∙ 𝑄,  𝐴12 ∙ 𝐻,  𝐴10 ∙ 𝐻0൯. (16)

     It can happen that in WDN with a non-redundant size the network DAG can undergo local 
reversals in some arcs. However, it is empirically demonstrated that the reference DAG 
remains the predominant DAG in analysed scenarios. Hence, the average scenario confirms 
its importance in defining the nodal behaviour, pointing out the filter effect of the network. 

4  THEORICAL RESULT VALIDATION 
The above theoretical analysis is verified in the follows through simulations on the WDN of 
Fossolo, a suburban area of Bologna, Italy (Fig. 1). The topology of this network was 
proposed by Bragalli et al. [22] and shared by the University of Exeter. The original WDN 
size has been modified so as to have a higher redundancy, as it occurs in real networks.  
     Water users are residential, and the annual average nodal demand is known. The number 
of users and the average peak hour demand in each node have been estimated using demand 
data by Bragalli et al. [22]. The sizing, the average annual demand and the estimated number 
of users are available in the appendix. 
     The demand factor and the correlation coefficient have been estimated through a 
preliminary analysis on historical data of a similar real residential dataset subjected to smart 
metering observation [23]. Hence, the statistical parameters for the generation of the 
stochastic scenarios were opportunely calibrated to comply with these values. The 
characteristics of the generated stochastic scenarios are presented in Table 1 and in Fig. 2. 
     The hydraulic simulation of the WDN allows obtaining the relation between nodal head 
loss 𝑑𝐻 and total inflow 𝑄௧௧ (eqn (6)) in each node, both for the deterministic and stochastic 
scenarios. Fig. 3(a) reports the results for node (ID9): the red line refers to deterministic  
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Figure 1:  Fossolo network and node IDs. 

Table 1:  Statistical parameters used to generate stochastic scenarios. 

Mean demand Standard deviation Cross-correlation 
l/min l/min – 
0.680 3.000 0.0016 

 
 

 

Figure 2:  Demand factor and correlation of the generated stochastic scenarios. 

scenarios, blue dots to stochastic scenarios. The red line of the deterministic scenarios is the 
mean curve of the stochastic scenarios. Fig. 3(b) reports the histogram of the residuals of the 
nodal head losses from the local mean value. 
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(a) (b)

Figure 3:   (a) Nodal head losses of one node (ID9) of Fossolo WDN in case of deterministic 
scenarios (red line) and stochastic scenarios (blue points); and (b) histogram of 
the residuals of the nodal head losses from the local mean value (deterministic 
trend). 

     Fig. 4(a) and (b) reports comparable results for node (ID18), which is characterized by 
higher variability (highlighted by the two histograms in Fig. 3(b) and Fig. 4(b)). However, 
the residuals from the deterministic curve keep a normal type of probability distribution, even 
if the variance seems higher. 
 

 
(a) (b)

Figure 4:   (a) Nodal head losses of one node (ID18) of the Fossolo WDN in case of 
deterministic scenarios (red line) and stochastic scenarios (green points); and (b) 
histogram of the residuals of the nodal head losses from the local mean value 
(deterministic trend). 

     The residual values of the head losses of the single node allow calculating the eqn (14) 
and obtaining the estimated value of the variance of the residuals head losses with respect to 
the residual nodal demands. 
     Fig. 5 shows a comparison between the value assumed from the variance evaluated on the 
residuals obtained from the simulation of ten thousand stochastic scenarios, and the one 
estimated by solving the eqn (14). This figure shows the relation between the two variances 

114  Urban Water Systems & Floods IV

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 208, © 2022 WIT Press



with respect to each node, hence proving that the linearization provides with a sufficient 
degree of accuracy the differences within nodal head losses from their expected deterministic 
value. 
 

 

Figure 5:    Comparison between the nodal values of variance, that is the ones from 
linearization and those calculated for the 10,000 stochastic scenarios. 

     Fig. 5 shows a slight underestimation (13.8%) of the theoretical values compared to the 
empirical ones. This underestimation is due to the effect of linearization. 

5  CONCLUSION 
In this paper the hydraulic behaviour of the WDNs is presented as a function of the average 
demand scenario and network topology. 
     The theoretical formulation was validated considering both deterministic scenarios and 
stochastically generated stochastic scenarios.  
     The first finding is that considering any deterministic scenario, the pressure at each node 
can be evaluated if the pressure of an average demand scenario is known. Furthermore, all 
the deterministic scenarios can be represented by a reference DAG obtained considering the 
average scenario. This conclusion is also generally valid for randomly perturbed demand 
scenarios, as long as they respect the scaling laws and the cross-correlation, with respect to 
the reference average scenario. 
     By comparing deterministic and stochastic scenarios having the same total inletting 
discharge, we showed that the relative differences in nodal demands are small. This result 
allows evaluating the trend of the nodal head even in non-deterministic scenarios.  
     Furthermore, estimating pipe flow rates and nodal head losses can be considered as an 
optimal starting point for the resolution of the equation proposed by Todini and Pilati to 
increase the speed of convergence in the numerical solution of the hydraulic model. 
     From a practical point of view, the results achieved make it possible to provide an 
objective criterion for evaluating the pressures detected in each node based only on the 
overall flow rate value. This allows operational decisions to be made in real time.  
 
 
 

y = 1.138 x 
R2 = 0.9975 
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NOTATION 
The following symbols are used in the paper: 
 
𝐴ଵ    ൌ ሾ𝑝, 𝑛ሿ incidence matrix relating pipes to known head nodes; 
𝐴ଵଵ    ൌ ሾ𝑝, 𝑝ሿ diagonal matrix, whose generic term is 𝐴ଵଵሺ𝑘, 𝑘ሻ ൌ 𝑟|𝑄|ఈିଵ; 
𝐴ଵଶ    ൌ 𝐴்

ଶଵ ൌ ሾ𝑝, 𝑛ሿ incidence matrix relating pipes to unknown head nodes; 
𝑎,    ൌ generic element of 𝐴ଵଶ; 
𝛼       ൌ exponent. Its value is 1.852 when using the Hazen–Williams equation; 
𝐵       ൌ [l, p] incidence matrix relating pipes to loops; 
𝛽,    ൌ generic element of 𝐵; 
𝐷ଵଵ    ൌ ሾ𝑝, 𝑝ሿ diagonal matrix of derivatives of 𝐴ଵଵ with respect to Q; 
𝐻      ൌ ሾ𝑛ሿ length vector of known fixed head nodes; 
𝑖, 𝑗, 𝑘 ൌ generic index; 
𝛾ೖ

   ൌ ሾ𝑝ሿ vector of coefficient that depends by diameter and roughness of pipes; 
𝑙        ൌ number of independent loops; 
𝐿      ൌ ሾ𝑝ሿ vector of length of pipes; 
𝑛      ൌ number of pipes connected to node i; 
𝑛       ൌ number of nodes with unknown head; 
𝑛      ൌ number of nodes with known head; 
𝑝       ൌ number of pipes; 
𝑄      ൌ ሾ𝑝ሿ vector of pipe flows; 
𝑞       ൌ ሾ𝑛ሿ vector of nodal demands; 
𝑞       ൌ known nodal demand at node 𝑖; 
𝑄,ೕ

  ൌ flow in the generic pipe 𝑘, connected to node 𝑖; 
𝑄௧௧   ൌ total instantaneous discharge; 
𝑟       ൌ ሾ𝑝ሿ vector of coefficients that depends on the dimensions used on the pipe like 
diameter, roughness and length. 

APPENDIX 
 

Table A1:  Average demand at peak hour in each node and relative number of users. 
 

Node’s 
ID 

Peak 
nodal 

demand 
(l/s) 

Number 
of users 

 Node’s
ID 

Peak 
nodal 

demand 
(l/s) 

Number 
of users 

Node’s
ID 

Peak 
nodal 

demand 
(l/s) 

Number 
of users 

1 0.49 126  13 1.16 297 25 0.77 198 
2 1.04 267  14 0.54 141 26 1.69 435 
3 1.02 261  15 1.10 282 27 1.42 366 
4 0.81 210  16 1.21 312 28 0.30 78 
5 0.63 162  17 1.27 327 29 0.62 159 
6 0.79 204  18 2.02 519 30 0.54 141 
7 0.26 69  19 1.88 483 31 0.90 231 
8 0.58 150  20 0.93 240 32 1.03 264 
9 0.54 141  21 0.96 246 33 0.77 198 
10 1.11 285  22 0.97 249 34 0.74 192 
11 1.75 450  23 0.86 222 35 1.16 297 
12 0.91 234  24 0.67 174 36 0.47 123 
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Table A2:  Pipes’ size: Internal diameter (D) (mm), Length (L) (m), Roughness (C)  
(mm1/3ꞏs–1). 

 
ID D L C  ID D L C ID D L C 
1 144.8 132.8 130  21 113 84.0 140 41 45.2 203.8 150 
2 67.8 374.7 130  22 126.6 49.8 130 42 45.2 248.1 150 
3 45.2 119.7 140  23 144.8 78.5 130 43 45.2 65.2 145 
4 67.8 312.7 140  24 81.4 99.3 140 44 57 210.1 145 
5 45.2 289.1 150  25 99.4 82.3 140 45 67.8 147.6 145 
6 67.8 336.3 145  26 57 147.5 140 46 67.8 103.8 140 
7 67.8 135.8 145  27 67.8 197.3 140 47 45.2 211.0 140 
8 57 201.3 145  28 113 83.3 140 48 81.4 75.1 140 
9 57 132.5 145  29 45.2 113.8 140 49 113 180.3 150 

10 45.2 144.7 145  30 81.4 80.8 140 50 57 149.1 140 
11 45.2 175.7 145  31 45.2 341.0 140 51 57 215.1 130 
12 81.4 112.2 145  32 57 77.4 150 52 81.4 144.4 130 
13 99.4 210.7 130  33 45.2 112.4 150 53 99.4 34.7 130 
14 162.8 75.4 130  34 45.2 37.3 145 54 126.6 59.9 130 
15 99.4 181.4 130  35 45.2 108.9 145 55 67.8 165.7 130 
16 67.8 147.0 150  36 81.4 182.8 150 56 99.4 120.0 130 
17 81.4 162.7 150  37 113 136.0 140 57 67.8 83.2 130 
18 45.2 99.6 150  38 99.4 56.7 140 58 203.4 1.0 130 
19 57 53.0 150  39 81.4 124.1 130   

20 67.8 163.0 140  40 144.8 234.6 130   
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