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Abstract

Recently, hydrokinetic turbines arise as a suitable technology for renewable energy
production in isolated zones where solar, wind and tidal energy are limited.
Hydrokinetic turbines convert kinetic energy of free water flow in rotational kinetic
energy. This energy is finally converted to electrical energy by an integrated
generator. Regarding the fact that power output is proportional to the cube of
river average velocity, knowing velocity distribution in the installation zone is a
crucial aspect for an optimum turbine operation. In this study, two-dimensional
Shallow Water equations (SWEs) are solved by the meshless method of local
collocation with Radial Basis Function in order to obtain the depth velocity
average distribution and water height in open channel flow. Firstly, power output
is estimated for a conventional turbine located in the centre of a straight channel.
Afterwards, SWEs are solved in a channel with elements to increase local velocity
with the aim of estimating power output increment. Electricity production can be
increased by adding geometrical elements which modify flow pattern keeping an
adequate depth for turbine operation.
Keywords: hydrokinetic turbines, radial basis functions, local collocation, open-
channel flow, power estimation.
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1 Introduction

Hydrokinetic turbines have arose as a suitable option for renewable energy
production in zones where solar and wind energies are limited. Several turbine
technologies has been implemented in order to capture kinetic energy from a
river, such as horizontal, vertical and transversal axis [1–3]. No matter technology
implemented, power coefficients provides the maximum ratio between mechanical
power extracted (available shaft work rate) and the kinetic energy rate of the
current, being its highest value the betz limit (0.59). In this sense, turbine
work rate is function of power coefficient, fluid density, swept-area and the
cube of free-current velocity. Power coefficient depends on technology use and
turbine geometrical aspects as well as operational conditions. In this case fluid
density is constant since turbine emplacing is conceived to be in a river while
swept-area depends on the square of characteristic length which is restricted
by water depth. Therefore, current-velocity must be an important criteria when
planning installation of hydrokinetic turbines since modification of this value
will have a crucial impact of power extracted. Recently, river velocity has been
artificially increased by using venturi inner shape ducts surrounding the turbine [4].
Nevertheless the impact of this strategy on water depth and river velocity has not
been study in detail. A computational model that can predict in a simple manner
and with a low computational cost, height and velocity in the river is needed for
evaluating the effect of emplacing obstacles to locally increase current velocity. In
this work, the Shallow Water Equations (SWEs) are used with this purpose.

SWEs have been widely used to model one- and two-dimensional open-channel
flow in situations whereby depth is much smaller than wide or velocity variation
along depth is negligible such as rivers, bays and straits. SWEs consists in a system
of non-linear equations in terms of depth-average velocity vector and water surface
height. Additionally, in most of the practical problems the SWEs must be solved in
complex domains given the geometrical irregularities presented in boundaries of
open water systems. Therefore, the use of meshless methods for solving SWEs has
been popularising during the last decades regarding the reduction in preprocessing
time, the use of high-order approximations and a versatile treatment of boundary
conditions. Several meshless methods has been applied to the solution of SWEs.
Among meshless methods, RBF direct collocation has been used to solve a
variety of partial differential equation (PDE) problems such as Poisson, Helmholtz,
Convection-diffusion and Navier–Stokes. Given a straightforward implementation
and the excellent behaviour of RBF in interpolation, the application of direct RBF
collocation for solving SWEs has been popularised recently [5–7].

In this work, a simple localised RBF collocation method is implemented for
solving two-dimensional SWEs in open-channel flow with the aim of evaluating
the effect on hydrokinetic turbine performance of adding obstacle to the channel
flow with the purpose of increasing current velocity at turbine emplacing
zone. Firstly, the hydrokinetic turbine technology is presented and performance
indicators are shown. Then, SWEs are briefly explained and the numerical
meshless method used for the analysis is reviewed. Finally, In the numerical result
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section, one- and two-dimensional validation problems are presented and results
for different obstacle configuration are shown in order to discuss its effect on
turbine mechanical power output.

2 Hydrokinetic turbines

Hydrokinetic turbines are employed to extract kinetic energy from a water current
by emplacing a rotor into the flow. Common application are the extraction energy
from tides and rivers. As wind turbines, hydrokinetic devices can be classified
into two major groups: axial and cross flow turbines. Propeller-type turbines
belong to the first group regarding the fact that axis is parallel to main stream
velocity. It is suitable for being utilised in rivers where direction of flow is
almost constant. Nevertheless, there are some disadvantages such as high impact
of velocity fluctuations on performance, use of high-resistant material to resist
debris flow and the need of submersible generator [3]. Some of this issues can be
avoided by using the cross flow technology, such as Savonius, Darrieus and Gorlov
turbines (for more information see [2]), because axis is perpendicular to the river
bed allowing the generator to be placed up to the water level. Unlike Darrieus and
Gorlov technologies, Savonius turbine is a drag-type device. Additionally, lower
noise level, less sensibility to flow fluctuations, less effect of depth-velocity profile
on its performance make vertical axis turbine a suitable option. Also, turbines with
horizontal axis perpendicular to flow direction and parallel to water surface are
considered as cross flow type turbines. No matter the turbine type, performance
can be expressed in terms of power coefficient CP which relates power output P
to energy kinetic rate of current through area swept by turbine bladesA, as follows

P =
1

2
CP ρAU

3
∞ (1)

where ρ and U∞ are fluid density and average free current velocity. Maximum
value of CP is 0.59 or the Betz limit. Values reported for wind axial turbines are
as high as 0.5 while the highest value found for vertical axis is 0.31 measured in
a Gorlov turbine [2]. Besides blade geometry and configuration, power coefficient
depends on the tip speed ratio given by:

λ =
ωR

U∞
(2)

with R as the distance between blade tip and axis. Normally, maximum value of
CP is found for a specific λ.

Several strategies can be implemented in order to increase power output. As
shown in equation (1), in case of increasing velocity, power can rise as the cube
of velocity provided that λ remain almost constant. Duct augmentation is the
most common strategy and consists in placing constrains to the flow such as duct,
nozzle, concentrator, diffuser, or augmentation channel with the aim of increasing
the velocity in zone upstream the turbine [4].
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3 Local RBF collocation method for SWEs

3.1 Shallow water equations

The two-dimensional SWEs includes mass balance and the two components of the
momentum conservation law, both of them in terms of the water surface height h
and depth-average velocity components u and v, as follows:

∂h

∂t
+
∂hu

∂x
+
∂hv

∂y
= 0 (3)

∂hu

∂t
+
∂hu2

∂x
+
∂huv

∂y
+ gh

∂H

∂x
= −ghSf x (4)

∂hv

∂t
+
∂huv

∂x
+
∂hv2

∂y
+ gh

∂H

∂y
= −ghSf y (5)

Water surface height h is measured from soil bottom, whose shape is given by
the topography function z(x, y), while total height is computed as H = h + z.
In this case, the friction force ~Sf = (Sf x, Sf y) is expressed according to the
Manning–Striker’s law, in the following way:

~Sf = n2
~U
√
u2 + v2

h
3
4

(6)

where ~U = (u, v) and n is the Manning constant. Three types of boundary
conditions are commonly used in SWEs: known height, known x and y discharge
(uh and vh, resp.) and land. In case of land boundary condition u = 0 and v = 0.

3.2 RBF collocation method

As Kansa [8] formulates, the dependent variable of a boundary value problem can
be approximated as a lineal combination of RBFs. When the approximation is
substituted into de governing PDE and the boundary condition and the resulting
expression is evaluated in a finite number of nodes scattered throughout domain
and boundary, it is possible to obtain a linear system of equations whose solution
are the coefficients of the original lineal combination of RBFs. Regarding the fact
that SWEs are a set of non-linear PDEs, RBF collocation must be implemented
in conjunction to a linearisation scheme or a non-linear solver. In our case, the
Newton–Raphson method is implemented and an implicit scheme is applied for
time discretisation.

Let us consider a generic function φ which is approximated by RBFs, in this
case the Multiquadric (MQ) function with m = 1, ψ = (r2 + c2)1/2 as follows:

φ =
N∑
i=1

αiψ(ri) +
∑

βP (~x)m−1k (7)
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with N as the number of points ~ε whereby the RBF is evaluated, regarding that
ri =

√
(~x− ~εi) • (~x− ~εi). In the localised formulation, N is the number of the

nearest points to the collocation point ~x, i.e. nodes inside of the subdomain defined
by a characteristic number of nodes or local radius. The polynomial term is added
in order to ensure invertibility of resulting interpolation matrix. Given m = 1, the
polynomial terms are reduced to a single constant. Therefore, φ spatial derivatives
are calculated according to:

∂φ

∂xk
=

N∑
i=1

αi
∂ψ(ri)

∂xk
(8)

After collocation of equation (7) at the nodes located inside a subdomain,
linear system of equations is obtained and unknown coefficients can be expressed
in terms of unknown variable values as [α] = [Ψ]−1[Φ] with [Ψ] and [Φ] as
the collocation matrix and the column vector of nodal values of variable Φ,
respectively. Therefore, equation (7) is rewritten in terms of unknown variable
values and matrix products, as:

φ(~x) = [G(~x)][Ψ]−1[Φ] (9)

where 1×N + 1 matrix [G(~x)] = [φ(r1), · · · , φ(rN ), 1].
With the aim of avoiding discontinuity effects on the stability of the solution, a

slightly different approximation is done here, in the sense that velocity and height
derivatives are not approximated by RBFs but the spatial derivatives of variable
products according to the governing equations. In order to discretise SWEs, the
generic variable φj takes the values reported in Table 1 in terms of the index j.

Table 1: Values of generic variable φ.

j 1 2 3 4 5 6

φj hu hv hu2 hv2 huv H

If the RBF approximations are substituted into equations from (3) to (5) and the
temporal derivatives are approximated by an implicit first-order scheme, a set of
discretised non-linear algebraic equations, corresponding to the generic case of an
interior subdomain includingN nodes, is obtained. After applying those equations
to each one of the internal nodes and, by replacing the corresponding one with
the boundary condition, at boundary nodes, a non-linear system of 3Nt equations,
withNt as the sum of internal and boundary nodes, is obtained. In the present case,
the system of equation is solved by using the Newton–Raphson method for each
time step.
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4 Numerical results

One and two dimensional shallow water problems with analytical solution
are solved in order to validate the implemented scheme. Accuracy of spatial
discretisation is evaluated for the 1-D problem of flow over a bump. Spatial
discretisation in 2-D situations is assessed by solving a transient problem with
analytical solution. In the last part of this section, methodology for estimation
of power output for a turbine emplaced in an open channel with and without
constrains are presented. Additionally, effect of constrains in power output is
discussed.

4.1 1-D problems

Different analytical solutions of SWEs for one-dimensional problems can be
obtained according to the methodology presented in [9] after defining the
topography function z(x, y) and the friction term value. With the aim of testing
the accuracy of the spatial discretisation, the transient code is employed to solve
the steady problems starting at an initial guess. As a validation problem, the steady
and frictionless flow in a one-dimensional open channel with a bump is addressed.
The domain length is L = 25 and the topography function is given by:

z(x) =

{
0.2− 0.05(x− 10)2 8 < x < 12,

0 else
(10)

Given the topography function (10), the following analytical solution is reported
for height in [9]:

h(x)3 +

(
z(x)− p0

2

2ghL
2 − hL

)
h(x)2 +

p0
2

2g
= 0 (11)

where p0 is a constant value for the discharge, fixed as a boundary condition, as
well as the height at outflow boundary given by hL = h(L). The initial solution
corresponds to water at rest, i.e. h(x) + z(x) = 2 and h(x)u(x) = p(x) = 0
at t = 0. Constant values for boundary conditions are given by h(0)u(0) =
p0 = 4.42 and h(L) = 2. Once analytical height is obtained by solving
the third grade polynomial (11), it is possible to find velocity since discharge
p = hu is constant throughout domain for one-dimensional steady situations
(see equation (3)). Topography shows a bump with a maximum at x = 10. The
bump produces a small depression on the surface and a corresponding velocity
increase. Downwind the bump, velocity and height values are the same as at the
inlet boundary.

With the aim of validating the method and analysing the convergence order
of the spatial discretisation scheme, the present problem is solved for different
number of nodes and different values of the shape parameter c of the MQ function
(Figure 1). In the first case, four nodal distribution are employed (N = 41, 81, 161,
321) and, according to trend obtained, the convergence of the scheme is shown.
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Figure 1: Relative L2 norm of the height error in terms of node spacing (left) and
shape parameter (right) for subcritical flow over a bump.

If a potential regression is made with data presented in Figure 1, a second-order
convergence rate is found (between 2.02 and 2.44). The error behaviour in terms
of the shape parameter agrees the usual trend in direct RBF collocation methods:
after a constant value zone, the error decreases when the shape parameter increases
up to a critical value whereby the error increases due to the ill-conditioning of the
local interpolation matrices.

4.2 2-D problem

Different two-dimensional analytical solutions for the SWEs were obtained by
Thacker [10]. Here, the radially symmetrical oscillating paraboloid problem,
as presented in [9], is solved by using the meshless scheme developed. The
topography is a paraboloid defined by the function z(r) = −h0(1 − r2

a2 ), where
h0 is the depth at central point of the domain when H = 0 (zero elevation), a is
the distance between central point and zero elevation circle in the shoreline and
r is the Euclidian distance from central point to any point (x, y) in the domain
[0, L]× [0, L].

The periodic solution for the frictionless flow case, is given by:

h(r, t) = h0

[ √
1−A2

1−A cosωt
− 1− r2

a2

(
1−A2

(1−A cosωt)2
− 1

)]
− z(r) (12)

u(x, y, t) =
1

1−A cosωt

[
1

2
ω

(
x− L

2

)
A sinωt

]
(13)

v(x, y, t) =
1

1−A cosωt

[
1

2
ω

(
y − L

2

)
A sinωt

]
(14)
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Figure 2: Numerical (circles) and analytical (continuous line) height solution of
the radially-symmetrical paraboloid problem (left) and Relative L − 2
norm of the height error for a simulation time of 4 s (right).

where ω =
√

8gh0/a is the frequency, r0 is the distance between central point
and the initial position of shoreline and A = (a2 − r20)/(a2 + r20). In order to
estimate boundary conditions from analytical solution, the following values of
solution parameters are considered: a = 3, r0 = 4, h0 = 1 and L = 4. Transient
numerical solution is attained for half oscillation period given by T = π

ω and by
fixing the following numerical parameters: c = 10, n = 8 and ∆t = 0.01. Nodal
distribution consists in a grid of N = 21 × 21 points equally spaced throughout
the square domain.

The numerical solution obtained for height along line y = x are presented
in Figure 2 for different times, with r∗ =

√
x2 + y2. The solution is in good

agreement with analytical function for the period of simulation. Nevertheless, error
increases as time passes but given the oscillatory nature of the problem the error
reduces once an oscillation is completed as shown in right part of Figure 2 where
relative L2-norm error of height are presented for a greater time of simulation
(t = 4s).

Although it is not shown for brevity, the two components of velocity exhibit
similar behaviour than height but relative error are higher towards boundary at
t = 1.0 due to the presence of a wet-dry interphase. However, the numerical results
attained for the solution of this problems shows applicability of the implemented
method to solve two-dimensional flow situations.

4.3 Open channel flow: hydrokinetic power increment

First of all, consider a straight open channel with a length-wide ratio of L/D = 5
and plane topography, i.e. z = 0. Inlet velocity boundary condition (at x1 = 0)
is u = 0.5 and v = 0 while outflow condition (at x = L) corresponds to
fixed water height h = 0.5. Lateral boundaries (x2 = 0 and x2 = D) are
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Figure 3: Nodal distribution for straight channel (left) and for channel with
obstacles (right).
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Figure 4: Velocity field for straight channel (left) and for channel with obstacles
(right).

considered walls (zero-velocity). Figure 3 (up) shows the homogeneous nodal
distribution employed. In order to compare hydrokinetic power increasing with
respect straight channel, a second computational domain is proposed with similar
boundary condition but obstacles of 0.2 × 0.4 size placed symmetrically. With
the aim of capturing vortex formation close to the obstacles, nodal distribution is
refined towards those zones as it is shown in Figure 3 (down).

Suppose that an axial hydrokinetic turbine of diameter DT = 0.2 is emplaced
in the point (0.5, 1.5). If power coefficient is supposed to be constant for a wide
range of tip speed ratios and available power is estimated with equation (1), the
increasing in power output is given by:

I =
P2

P1
=
ū2

3

ū13
(15)

where subscript 1 is for straight channel and 2 for channel with obstacle. Average
velocity in turbine emplacing zone is computed, numerically, as:

ū =
1

DT

∫ 1/2∗(1+DT )

1/2∗(1−DT )

u dx2 (16)

Velocity field obtained when solution reaches steady state are presented in
Figure 4. Fluid is accelerated when passing between the obstacles as it was
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Figure 5: x1-Velocity profile in x1 = 1.5.

expected. Velocity profiles in the turbine emplacing line (x1 = 1.5), for both
cases, are shown in Figure 5. Increment on velocity average near turbine zone
in the channel with obstacles is equivalent to a power output increment of 7.51
times the value in the straight channel case.

5 Conclusions

A methodology for estimating the effect of morphological changes in open channel
on hydrokinetic power output has been developed based on the local collocation
method with Radial Basis Functions for solving Shallow Water Equations.
This methodology could be used to predict power output for different channel
geometries and turbine positions. In the example presented, an increasing of 7.51
times in power is estimated by adding symmetric obstacles to a straight channel.
Future work will be focused on improved spatial discretisation to addressed more
complex geometries and supercritical regime flow.
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