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Abstract 

H-shaped beams connected to steel dampers are subjected to compressive and 
tensile forces in addition to flexural moment, and then the buckling behavior of 
H-shaped beams under axial force and flexural moment is more unstable than 
that under only flexural moment.  
     In this paper, the lateral buckling behavior for H-shaped beams with the 
lateral bracing under the flexural moment and axial force is clarified. First, the 
elastic lateral buckling load of H-shaped beams is developed with the energy 
method, and the relationship between the lateral buckling load and the bracing 
rigidity is clarified. The bracing rigidities consist of the lateral and rotational 
rigidities. The required bracing rigidity is developed from two equations of the 
elastic lateral buckling load. Next, large deformation analyses are performed 
using the numerical analyses program ABAQUS with version 6.13, and the 
elasto-plastic lateral buckling behavior for H-shaped beams with lateral and 
rotational bracings is presented. Finally, the lateral buckling load for H-shaped 
beams with the required bracing rigidity is estimated with the modified 
equivalent slenderness ratio, and the elasto-plastic buckling stress is compared 
with the buckling curve for Japanese standard code. 
Keywords:  lateral buckling H-shaped beam, bracing rigidity, axial force. 

1 Introduction 

When a steel moment resisting frame is subjected to seismic force, H-shaped 
beams carry the flexural moment. However, when dampers are applied to a 
moment frame, beams are subjected to axial force in addition to flexural moment.  
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Then the axial force reaches 30% of the beams’ yielding strength. Consequently, 
seismic behavior of beams of a moment frame becomes more unstable than those 
with no damper. 
     Previous research (Kimura et al. [1]) conducted static cyclic loading tests of 
H-shaped beams by loading the combinations of flexural moment and axial force, 
and local buckling behavior and the ultimate strength were evaluated. It was 
shown that the ultimate strength and the plastic deformation capacity of the 
beams were reduced significantly, compared with those of the beams sustaining 
only flexural moment. 
     Our previous research (Kimura and Yoshino [2]) clarified the relation 
between the lateral buckling strength of H-shaped beams and the demands of the 
lateral and rotational rigidities for braces when a beam is subjected to uniform 
moment distribution.  
     In this paper, the elastic buckling load of the beams under the combination of 
flexural moment and axial force is developed by the energy method, and the 
results are verified by eigenvalue analysis. The eigenvalue analyses are also 
conducted for H shaped beams under the bending moment and axial force. Then 
it suggests the required bracing stiffness to restrain the buckling deformation of 
H-shaped beams at the bracing points. Next, the elasto-plastic buckling strength 
is calculated from the large deformation analyses, and is evaluated using the 
buckling curve for Japanese standard code [3] with the modified slenderness 
ratio with the yield strength and the elastic lateral buckling load for H-shaped 
with lateral braces. 

2 Elastic buckling load for H-shaped beams subjected to 
flexural bending moment and axial force 

2.1 Development of elastic buckling load for H-shaped beams subjected to 
flexural bending moment and axial force 

In this section, the elastic buckling load for H-shaped beams under bending 
moment and axial force is obtained using the energy method and eigenvalue 
analyses. When an H-shaped beam with brace is subjected to flexural bending 
moment and axial force, the upper flange of H-shaped beam is buckled laterally 
and torsionally. The potential energy U is expressed as the following (Kimura 
and Yoshino [2], Bleich [4]). 
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Here, EIf is the flexural rigidity of each flange for H-shaped beam, GK 
(=2GKf+GKw) is the torsional rigidity of H-shaped beam. GKf is the torsional 
rigidity of each flange and GKw is the torsional rigidity of web. Ku is the 
rotational rigidity of the brace, and K is the rotational rigidity of the brace.   is 
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the torsional angle of web. The relationship between the rotational rigidity  
and the flexural rigidity of braces is expressed as the equation in Fig. 1(b). l is 
the length of H-shaped beams. P1 and P2 are compressive force at beam ends 
(P1>P2), u1 and u2 are the lateral deformation of each flange, and u0 is the lateral 
deformation at the bracing point. It is also assumed that braces are set up at 
upper flange, so u0 is equal to u1. The lateral deformation of beam is expressed as 
a function of the sine curves in the following. The boundary condition is simple 
support to strong and weak axes. When H-shaped beams is subjected to uniform 
moment as shown in Fig. 2, two types of load conditions are considered: one is 
that the stress of upper flange become compressive (designated as Type A), and 
the other is that the stress of upper flange become tensile (designated as Type B). 
Then the axial compression load and the bending moment are replaced to the 
axial forces of both flanges, P1 and P2 as shown in Fig. 3.The lateral deformation 
of member and web deformation are expressed as a function of the sine curves in 
the following. 
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Lateral displacement of the bracing, u0, and torsional angle at the bracing point 
of beam, 0, is expressed with the lateral deformation of flanges, u1and u2 as the 
following, respectively. 
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Substituting Eqs (2) to (4) for Eq. (1), the buckling load, Pcr, are obtained. 
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     Eqs (5) and (6) are the equations for the lateral buckling load of H-shaped 
beam with bracing on compressive flange and that on tensile flange. For these 
equations, the lateral deformation of H-shaped beam at the bracing point is 
assumed not to be completely restrained.  
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Figure 1: Lateral buckling deformation of H-shaped beam with lateral braces 
on upper flange. Lateral buckling of H-shaped beam and buckling 
deformation of H-shaped beam at bracing point. 
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Figure 2: Loading condition. 
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Figure 3: Ratio of the load which subjected to an upper flange and a lower 
flange. 
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     On the other hand, when the lateral deformation of H-shaped beam is 
completely restrained at the bracing point, Eq. (7) is developed from Eq. (1) in 
the condition of a1=b1=0. The smaller value of Pcr obtained from Eqs (5) and (7) 
is useful as the lateral buckling load for H-shaped beams with bracing on the 
compressive flange (Type A). Similarly, the smaller value of Pcr obtained from 
Eqs (6) and (7) is useful as the lateral buckling load for H-shaped beams with 
bracing on the tensile flange (Type B). The lateral buckling moment, Mcr, is 
calculated from Pcr obtained from Eqs (5)–(7) multiplied by the distance of both 
flanges, d. 

2.2 Effect of bracing rigidity on elastic buckling load for H-shaped beams  

Fig. 4 presents the numerical analysis model for H-shaped beams with bracing 
on upper flange. ABAQUS with version 6.13 is used as numerical analyses 
program. The H-shaped beam and vertical stiffeners at the bracing point consists 
of four node shell elements, and the bracings are replaced on the lateral and 
rotational springs. The boundary condition is simple support to strong and weak 
axes. Herein, cross-sectional shapes of three kinds are adopted as shown in 
Table 1. Then each cross-sectional shape is selected as the ratio of flange width 
to web depth, b/h=0.33,0.5, 0.77, respectively. For these examinations, a 50–200 
lateral rigidity ratio ku/(EIf/l3) and a 2.5–5.0 rotational rigidity ratio k/(GKf/d) are 
adopted. 
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Figure 4: Numerical analysis model. 

Table 1:  Cross sectional shape of H-shaped beams. 

B/H H × B × t w × t f

0.77 390 × 300 × 10 × 16

0.5 500 × 250 × 9 × 16
0.33 600 × 200 × 11 × 17  
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     Fig. 5 presents the relation between the elastic buckling stress, cr, for H-
shaped beams with braces on upper flange and the ratio of axial compressive 
forces on upper and lower flanges, p (=P2/P1). The curves show the buckling 
stress, Pcr/A1, obtained from Eqs (5)–(7). Here, A1=Af+Aw/6; Af is the area of 
compressive flanges and Aw is the web area of H-shaped beams. The symbols 
show the eigenvalue analyses results. The beams with b/h=0.5, Ku/(EIf/l3)=50 and 
K/(GKf/d)=5 are selected. The dots  is the points to change from the buckling 
mode lateral and torsional deformed at the brace point to that perfectly fixed at 
the brace point. The buckling curves obtained from Eqs (5)–(7) and the symbols 
of the eigenvalue analyses results are very fitting well. Eqs (5)–(7) can be 
applied to estimate the elastic buckling stress of H-shaped beams under bending 
moment and axial force. The black and grey curves show the buckling stress for 
Type A and Type B, respectively. The buckling stress for Type A and B are 
almost equal at p=0. The smaller the ratio of axial compressive forces on both 
flanges, p becomes, the larger the buckling stress becomes. As the slenderness 
ratio becomes larger, p at the dots  becomes larger.  
     Fig. 6 shows the relation between the lateral rigidity ratio and the rotational 
rigidity ratio for the required rigidity. The beams with b/h=0.5 and 1=120 is 
selected, and the parameters are the ratio of axial compressive forces on upper 
and lower flanges, p and the loading condition. The curves represent the case for 
the bracing rigidity changed from the buckling mode laterally and torsionally 
deformed at the brace point to that perfectly fixed at the brace point. The black 
curves represent the cases of Type A, and the gray curves represent the cases of 
Type B. The curves for Type A are drawn from Eq. (5) and Eq. (7). The curves 
for Type B are drawn from Eq. (6) and Eq. (7). The symbols of horizontal axis, 

and  represent the minimum required rotational rigidity, K0, at Ku=∞. The 
symbols of vertical axis, and  denotes the minimum required lateral rigidity, 
Ku0, at K=∞.  
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Figure 5: Lateral buckling stress 
of H-shaped beams. 

Figure 6: Required rigidity of 
H-shaped beams. 
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     The buckling load for less than Ku0 or K0 never reaches that perfectly fixed at 
the brace point, even though the other rigidity becomes larger.  The smaller the 
ratio of axial forces, p becomes, the smaller the required rigidity becomes. For 
p=0 and p= 0.5, the buckling deformation at the brace point is perfectly fixed, 
even though Ku is equal to 0. If the rotational rigidity is smaller than the 
minimum required rotational rigidity, or if the lateral rigidity is smaller than  
the minimum required lateral rigidity, then no matter how large the other rigidity 
is, the buckling load does not reach that perfectly fixed at the brace point. 

3 Elasto-plastic buckling strength for H-shaped beams  
with braces subjected to flexural bending moment and 
axial force 

3.1 Elasto-plastic buckling behaviour for H-shaped beams  

In this section, elasto-plastic buckling behavior for H-shaped beams with braces 
subjected to bending moment and axial force is confirmed using the elasto-
plastic large deformation analyses (FEM). Then the elasto-plastic buckling stress 
for these members is evaluated with the buckling curve for Japanese and U.S. 
design codes using the modified slenderness ratio. 
     FEM analyses are performed to investigate the elasto-plastic buckling 
behavior for H-shaped beam. The analyses model and boundary condition are the 
same as those used for the eigenvalue analyses models described in the previous 
section. Material properties for H-shaped beams are presented in Table 2. The 
initial impressions of the lateral displacement, u, the torsional angle,  are 
described as the function of sine curves in the following. 

 
2

sin sin
2500 10000

l z l z
u

l l

 
   (8) 

 1tan ( / )u d   (9) 
 

Table 2:  Materials properties of H-shaped beams. 

E (N/mm2) y (N/mm2) u (N/mm2)

210000 294 436

Est (N/mm2)

2740
 

 

     Fig. 7 presents the required rigidity curves for Type B and the selected sample 
point of Bk0 for elasto-plastic analyses models with b/h=0.33, =160 and p=-1.0. 
The black of surface of required rigidity are represented as the function, k0, 
obtained from Eqs (5) and (7) for Type B.  
     There is no required rigidity at Ku=0 for Type B. Therefore the lateral  
rigidity for H-shaped beams is selected by Japanese design code [3]. The  
lateral rigidity ratio, Ku/(EIy/l3)=131 is constant irrespective of the cross-sectional 
shapes and slenderness ratio. The intersection point of the black surface, k0 and 
Ku/(EIy/l3)=131 is selected as the required rigidity, Bk0. 
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Figure 7: Lateral and rotational rigidity for elasto-plastic analyses models. 

     The ratio of bracing rigidities between 0.25 k0 and 1.5 k0 is selected for 
numerical analyses. For example, the coordinates on the curve of 0.5k0 are half 
of the coordinates on the curve of k0. Thereby the values of Ku/(EIy/l3) and 
K/(GKf/d) for 0.5k0 means half of those for k0, respectively. 
     Fig. 8 shows the elasto-plastic buckling behavior for H-shaped beams with 
lateral braces subjected to bending moment and axial force. The beams  
with b/h=0.33, 1=160 are selected. The parameter are the magnitudes of the 
required rigidity and the ratio of axial compressive forces on upper and lower 
flanges, p (=P2/P1). Figs 8(a)–8(c) present the ratio of the bending load to the 
yielding load P2/Py, the lateral displacement u/l, the torsional angle . Herein, P2 
is the load of low flange. 

The symbols u andin Figs 8(b) and 8(c) represent the displacement at the 
center of beams. The maximum load with k0 is about 10% larger than that with 
0.5k0, because the braced rigidity for k0 is twice larger than that for 0.5k0. In 
Figs. 8(b) and 8(c), lateral displacement and torsional angle curves for 0.5k0 are 
larger than those for k0.  

Fig. 9 presents the concept of the equivalent sectional area to carry the axial 
compressive load, P1 and P2. The critical load Pcr is divided to the axial 
compressive force, Ncr and the bending moment, Mcr as shown in Fig. 9(a) and 
9(b), and the flange’s axial stresses issued from the axial compressive force,crN 
and the bending moment, crM are obtained, respectively. The flange’s axial 
stress in Fig. 9(c) is equal to the sum of the axial compressive stresses, and from 
the equilibrium equation, the equivalent area on larger compressive flange is 
expressed in the following. 
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     The equivalent sectional area, Ap consists of the flange area, Af and the part of 
the web area, Aw.  is varied from 1/6 to 1/2 by the axial force ratio between 
the upper and lower flanges as shown in Fig. 10, and the curves for three kinds 
of sectional member are almost identical. 
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Figure 8: Elasto-plastic lateral buckling behavior for H-shaped beams. 
(a) Buckling load  and  rotation;  (b)  Lateral  deformation  and  rotation;  
(c) Torsion and rotation. 
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Figure 9: Concept of equivalent sectional  
area. 

Figure 10: Rate of sectional area 
of web to equivalent 
sectional area. 
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3.2 Estimation of elasto-plastic buckling stress for H-shaped  beams  with  
continuous braces  

Fig. 11 portrays the relation between the elasto-plastic buckling stress, cr/y for 
H-shaped beams with braces and modified equivalent slenderness ratio, c. In 
fact, c is shown as the following in the Japanese design code [3]. 

/c y crP P                                                 (11) 

     Here, Py is the yield load and Pcr is Euler’s buckling load. When H-shaped 
beams with brace are subjected to bending moment and axial force, Pcr in 
Eq. (10) is replaced on the buckling load obtained from Eqs (5)–(7). Py  is the 
yield stress multiplied by the equivalent area, Ap as follows. 
 

b y cr y y pP P P A                                         (12)  
 

This equivalent slenderness ratio in Eq. (12), b  is called the modified 

equivalent slenderness ratio.  
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Figure 11: Lateral buckling stress of H-shaped beams with braces. 

     These curves in Fig. 11 are the buckling stress curves for Japanese design 
codes [3], and the tangent line of Euler’s buckling curve from cr/y=0.6. The 
symbols show results of numerical analyses. The symbols constantly exceed  
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the buckling stress curve for bending moment in the range of b >0.9, and these 

constantly exceed that for compressive forces in the range of b ≤0.9. Also the 

symbols distributed as the upper-bound for the tangent line of cr/y=0.6. 
Consequently, the elasto-plastic buckling stress for H-shaped beams subjected to 
bending moment and axial force can be evaluated approximately by the buckling 
curves in Japanese design codes [3] using the modified equivalent slenderness 
ratio. 

4 Conclusions 

This paper evaluated the effect of the lateral and rotational braces on lateral 
buckling stress for H-shaped beams subjected to bending moment and axial force. 
Results show the following. 
1.  The elastic lateral buckling load for H-shaped beams under the combination 

of flexural moment and axial force is obtained from Eqs (5)–(7). When the 
upper flange’s compressive load is larger than the lower flange’s one, the 
smaller value obtained from Eqs (5) and (7) is applicable as the elastic 
buckling load for these beams. When the upper flange’s compressive load is 
smaller than the lower flange’s one, the smaller value obtained from Eqs (6) 
and (7) is applicable as the elastic buckling load for these members. 

2. It is shown that the lateral deformation of upper flange is completely restrained 
at the bracing point, when the braces with the proposing required rigidities are 
set to the H-shaped beam.  

3. The approximate elasto-plastic buckling stress for H-shaped beams with the 
lateral and rotational braces can be estimated using the equations in 
the Japanese design codes with the modified equivalent slenderness ratio 
in Eq. (9). 
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