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Abstract 

The interest to improve the response of structures in front of an earthquake has 
increased in recent years, leading to the investigation of different calculation 
methods, especially those based on static non-linear analysis to increase 
accuracy. The non-linear calculation can be approached by means of discrete or 
continuous models. The discrete models represent the structure by a finite 
number of degrees of freedom; in this case the movement equations are ordinary 
differential equations which are resolved by numerical methods. 
     This paper applies a new method for the numerical integration of SDOF and 
2DOF, which is developed from the Scheifele methods. The algorithm integrates 
the unperturbed problem without truncation error, which represents an advantage 
in front of the Taylor series. The new method calculates the exact solution of the 
perturbed problem through a series of functions, whose coefficients are obtained 
by simple algebraic recurrences involving the perturbation function. 
     To illustrate the application of the algorithm the resolution of two linear 
systems is shown; the first one with a single degree of freedom and the second 
with two degrees of freedom.  
Keywords: seismic response, SDOF, 2DOF, numerical solutions, perturbed 
linear systems of ODEs. 
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1 Introduction 

In recent years, interest in improving the response of structures to seismic 
activity has increased dramatically which has in turn led to research into the 
different methods of calculation. Historically speaking, structural calculations, 
both in the field of building and civil engineering, have been carried out from a 
static viewpoint, with a particular focus on those based on non-linear static 
analysis to increase precision. 
     The need for non-linear calculation is due to the fact that elastic calculation 
allows us to obtain the elastic capacity of the structure but not the failure 
mechanism of the same and, therefore, the redistribution of stresses on the 
sections. 
     Non-linear calculation also enables greater detail to be achieved as regards the 
structural model and, particularly, in formulating a more precise equation to 
model the movement caused by seismic activity. 
     Non-linear calculation can be approached from the point of view of 
continuous or discrete models. Continuous models have distributed parameters, 
where the movement equations are differential equations in partial derivatives, 
models whose exact integration is only possible in the case of structures with 
simple geometry.  
     Discrete models represent the structure through a finite number of degrees of 
freedom. In this case, the movement equations are ordinary differential equations 
that are resolved by numerical methods. 
     Typical civil engineering structures are always schematised as MDOF. For 
example, buildings with several floors are analysed using these systems. 
For n degrees of freedom, the equation is expressed in matricial fashion: 
 ( ) ( ) ( ) ( )M t C t K t M t+ + = − x x x a  (1) 
 (0) = =0 0x x , (0) = =0 0 x x   
where M, C and K are the mass, damping and stiffness matrices, respectively. 
The vector column ( )ta  contains the acceleration values. 
     These problems are currently resolved by using different software programs 
that implement numerical methods to calculate the structural response to such 
oscillatory movements as seismic activity.  
     This study applies a new method for the numerical integration of these kinds 
of oscillators and systems, and is based on the methods used by Scheifele [1–5], 
involving an extension of the Taylor series methods. Said method allows us to 
express the solution of the system as a series of Φ -functions, which are real 
functions with values in the ring of the matrices ( ),m   [6], obtaining the 
coefficients of the series by recurrences which involve the perturbation function. 
     The Φ -function series method is able to integrate the perturbed problem 
exactly, which is an advantage over algorithms based on the Taylor series. 
     In order to achieve numerical integration of the IVP (1), a linear differential 
operator is defined, D+B, with B being a suitable matrix that allows us to 
annihilate the perturbation terms, transforming the system into a homogeneous 
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second-order system, and managing to integrate it exactly with only the two first 
Φ -functions of the series method. 
     To illustrate how the new algorithm is applied, we show the resolution of the 
single degree of freedom and two degrees of freedom linear system, which 
model earthquakes.  
     The precision and efficiency of the Φ -function series method is contrasted 
with the results obtained by other well-known integrators, such as LSODE, 
Rosenbrock, Gear, Newmark β -method and the Wilson θ -method. 

2 Application of the Φ-functions series method to an 
earthquake modelled by an SDOFa 

The equation of motion (or dynamic equilibrium equation) of a Single Degree Of 
Freedom (SDOF) is ( ) ( ) ( ) ( )emx t cx t kx t F t+ + =   where m is the floor’s mass, c 
and k are the damping and stiff coefficients, respectively. ( )eF t  is the external 
force [7]. 
     The importance of a SDOF resolution lies in that is that best shows the 
interdependence between structure and its properties and the duration of an 
earthquake. 
     Whereas the given structure (Fig. 1), which is not subject to any external 
force but a movement of the ground due to an earthquake, the elastic force of the 
columns is expressed through ( )( ) ( )s gF k y t u t= − − , where ( )y t  and ( )gu t  are 

the absolute displacement of the mass and of the ground, respectively. 
 

 

Figure 1: Single Degree of Freedom System (SDOF). 

     The expression ( ) ( ) ( )gx t y t u t= − is the relative displacement between the 
mass and the ground, therefore ( )sF kx t= − . 

     Analogously, the damping force is ( )( ) ( ) ( )d gF c y t u t cx t= − − = −  

 and the 

external force is zero. 
     Applying Newton’s second law, ( )F my t=∑ 

, is obtained 

( ) ( ) ( ) ( )gmx t cx t kx t mu t+ + = −  
, in standardized form: 

 2( ) 2 ( ) ( ) ( )n n gx t x t x t u tζω ω+ + = −  

 (2) 
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where /n k mω =  is the undamped natural frequency of vibration and 

( )/ 2 nc mζ ω=  is the critical damping ratio. 
     If ( )gmu t

 is a harmonic forcing function, i.e. 0 0( ) sin( )gmu t F tω=
 equation (2) 

can be expressed: 

 2 0
0( ) 2 ( ) ( ) sin( )n n

Fx t x t x t t
m

ζω ω ω+ + = − 

 (3) 

at the moment the earthquake occurs, it is very reasonable to assume that the 
structure is at rest, i.e. (0) 0x = , (0) 0x =

and [ ]0,t T∈ . 
     In order to apply the Φ -function series method, the change of variable is 
affected: 
 1x u= , 2x u=   
where 
 1 2u x u= =    

 2 20 0
2 0 2 1 02 sin( ) 2 sin( )n n n n

F Fu x x x t u u t
m m

ζω ω ω ζω ω ω= = − − − = − − −  

 (4) 

     The IVP (3) can be expressed as: 

 1 1 0 0
2

2 2

0 1 sin( )0
2

t

n n

u u F t
u u m

ω
ω ζω

−      + = −      
     





, 1

2

(0) 0
(0) 0

u
u
   

=   
  

 (5) 

     The variable is introduced in order to make easier the elimination the 
disturbance’s function of the IVP (5), following the Steffensen’s techniques [8, 
9]. 

0
3 0sin( )Fu t

m
ω= − , obtaining a new IVP. 

 1 1
2 0 0

2 2 0 0 0

3 3

( ) 0 1 0 ( )
( ) 2 0 ( ) 0 sin( ) cos( ) ,
( ) 0 0 0 ( )

t

n n

u t u t
F Fu t u t t t
m m

u t u t
ω ζω ω ω ω

−    
     + = −           

    







 (6) 

with ( )(0) 0 0 0 t=u  

     To invalidate the function of disturbance, the differential operator ( )D B+  is 
applied to  (6), where B is the following matrix: 

 
2
0

0 0 0
0 0 1
0 0

B
ω

 
 = − 
 
 

 (7) 

obtaining the extended IVP, 

 1 1 1
2

2 2 2
2 2 2 2

3 0 3 0 0 3

( ) 0 1 0 ( ) 0 0 0 ( ) 0
( ) 2 1 ( ) 0 0 0 ( ) 0
( ) 0 0 ( ) 2 0 ( ) 0

n n

n n

u t u t u t
u t u t u t
u t u t u t

ω ζω
ω ω ω ζω ω

−         
         + − + =         
         
         

 

 

 

 (8) 

 ( )(0) 0 0 0 t=u , 0
0(0) 0 0

tF
m
ω = − 

 
u   
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which is integrated exactly using the Φ -functions series algorithm described in 
[6].  

2.1 Resolution of a seismic model (SDOF) by Φ-functions series method 

Choosing the following specific values for the structural variables [7]: 
2

1.0 
.

k sm
in
⋅

=  , 5%ζ = , 2  n
rad

s
ω π= , 0 10 F kip= , 

0 4 rad
s

ω =  and 1 T s= . 

     The IVP is: 

 
( )

1 1
2

2 2

3 3

0 1 0( ) ( )
( ) 4 0 ( ) 0 10sin(4 ) 40cos(4 ) ,

5
( ) ( )0 0 0

t
u t u t
u t u t t t
u t u t

ππ

− 
    
    + = −           

 







1

2

3

(0) 0
(0) 0 .
(0) 0

u
u
u

   
   =   
   
   

 (9) 

     By applying the differential operator, ( )D B+ , is obtained the expanded IVP: 

 
1 1 1

2
2 2 2

23 3 3

0 1 0( ) ( ) 0 0 0 ( ) 0
( ) 4 1 ( ) 0 0 0 ( ) 0 ,

5
( ) ( ) 16 ( ) 00 16 0 64 0

5

u t u t u t
u t u t u t
u t u t u t

ππ
ππ

 −                     + − + =                             

 

 

 

 (10) 

( )(0) 0 0 0 t=u , ( )(0) 0 0 40 t= −u , 
which is integrated exactly by the following algorithm, particularized for this 
problem. 
 ( )0 0 0 0 0 t= =a u  (11) 

2
1 0

0 1 0 0
4 0 0

5
400 0 0

ππ

 
  −   = − −        

 

a a
 

from k = 1 up to n calculates: 

0 0 1 1( ) ( )k h hΦ +Φu = a a  

0 k=a u  

2
1

0 1 0 0
4 0 10sin(4 )

5
40cos(4 )0 0 0

k kh
kh

ππ

 
  −   = − −        

 

a u
 

following k. 
     The results obtained using the Φ -functions series method, are compared with 
the known codes: 
     LSODE methods, causes a numerical solution to be found using the 
Livermore Stiff Ode Solver. It solves stiff and nonstiff systems. It uses Adams 
methods (predictor-corrector) in the nonstiff case, and Backward Differentiation 
Formula (BDF) in the stiff case. 
     ROSENBROCK the method finds a numerical solution using an Implicit 
Rosenbrock third-fourth order Runge-Kutta method with degree three 
interpolant. 
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     GEAR causes a numerical solution to be found by way of Burlisch-Stöer 
rational extrapolation method. The method has higher precision and calculation 
efficiency, especially in solving stiff differential equations. 
     TAYLOR SERIES the method finds a numerical solution to the differential 
equations, using a Taylor series method. This method can be used for high 
accuracy solutions.  
     NEWMARK BETA-METHOD is a method of numerical integration used to 
solve differential equations. In this method the constant average acceleration is 
generally used in structural dynamics because it has been shown to have a high 
degree of numerical stability. 
     WILSON THETA-METHOD assumes that the acceleration of the system 
varies linearly between two instants of time, t  to t hθ+ , where the value of θ  
need not be an integer and is usually greater than 1.0. the method is 
unconditionally stable for linear dynamic systems when 1.37θ > , and a value of 

1.4θ =  is often used for nonlinear dynamic systems. 
 

  

Figure 2: The decimal logarithm 
of module of the relative 
error of the solution 

( )tu . 

Figure 3: The decimal logarithm 
of the relative error of 
the solution ( )x t . 

     Fig. 2 shows the graph of the decimal logarithm of module of the relative 
error of the solution ( )tu , vs t, calculate using (11), step size 0.01h =  and 50 
digits, with the numerical integration codes LSODE with 2510tol −= , 
ROSENBROCK with abserr = 10-30, GEAR with 2510errorper −=  and 
TAYLORSERIES with abserr = 10-25. 
     Fig. 3 shows the logarithm graph for the absolute value of the relative error of 
solution ( )x t , vs. t, obtained with 50 digits, calculated by means of (11), with 
two Φ -functions and step size 0.001h = , compared with the numerical 
integration codes NEWMARK BETA-METHOD with 1/ 2δ = , 1/ 4α = , 

0.001h =  and WILSON THETA-METHOD with 1/ 2δ = , 1/ 6α = , 1.4θ = , 
0.001h = . Analogous results are obtained for the velocity ( )x t . 
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3 Application of the Φ-functions series method to an 
earthquake modelled by a 2DOF 

A 2DOF can be represented in Fig. 4 and it is used to study the dynamic forces 
acting on this system. Similarly at SDOF, four types of forces act on each floor 
mass, the stiffness force, the damping force, the external force and inertial force 
[7]. 

 

Figure 4: Two Degrees of Freedom System (2DOF). 

     The dynamic equilibrium equations of motion are: 
 1 1 1 2 2 1 1 2 2 1 1

2 2 2 2 2 2 2 2 2

0 ( )
0 ( )
m x c c c x k k k x F t

m x c c x k k x F t
+ − + −          

+ + =          − −          

 

 

 (12) 

 
defining 1

2

0
,

0
m

M
m

 
=  
 

 1 2 2

2 2

,
c c c

C
c c
+ − 

=  − 

 1 2 2

2 2

,
k k k

K
k k
+ − 

=  − 
1

2

( )
( )

( )
x t

t
x t

 
=  
 

x  and 

( )1 2( ) ( ) ( ) tF t F t F t= , when the symmetrical and positive definite matrices M, C 
and K, are the mass, damping and stiffness matrix, respectively; the system  (12) 
can be expressed by ( ) ( ) ( ) ( )M t C t K t F t+ + = x x x . 
     Considering that the structure is subjected to an earthquake ground motion, 
where only horizontal translation of the earthquake ground motion is considered. 
Applying the Newton’s second law and given that the external force is zero, are: 
 ( ) ( ) ( ) ( )

( ) ( )
1 1 2 1 2 1 1 2 1 2 1 1

2 2 2 2 1 2 2 1

0,

0,
g gm y c y y c y u k y y c y u

m y c y y k y y

+ − + − + − + − =

+ − + − =

    

  

 (13) 

where gu  and gu  are the absolute ground displacement and the absolute ground 
velocity, respectively. 
     If it define 1 1( ) ( ) ( )gx t y t u t= −  and 

2 2( ) ( ) ( )gx t y t u t= − , as relative 
displacement between the mass and the ground, the equations (13) are: 
 1 1 1 2 2 1 1 2 2 1 1

2 2 2 2 2 2 2 2 2

0 0 1
0 0 1 g

m x c c c x k k k x m
u

m x c c x k k x m
+ − + −           

+ + = −           − −            

 



 

 (14) 

     If  1

2

0 1
0 1 g

m
u

m
  
  

  


 is a harmonic matrix forcing function, i.e.:  

 0 01

0 02

sin( )0 1
sin( )0 1 g

F tm
u

F tm
ω
ω

   
=    

    


 (15) 
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equation (14) is: 
 0 01 1 1 2 2 1 1 2 2 1

0 02 2 2 2 2 2 2 2

sin( )0
sin( )0

F tm x c c c x k k k x
F tm x c c x k k x

ω
ω

+ − + −          
+ + = −         − −          

 

 

 (16) 

at the moment that the earthquake occurs, it is very reasonable to assume that the 
structure is at rest.  
     Therefore or normalized form, the IVP is: 
 ( )1 1

0 0 1 0 0 2( ) ( ) ( ) sin( ) / sin( ) / tt M C t M K t F t m F t mω ω− −+ + = − x x x  (17) 

( )0(0) 0 0 t= =x x  and ( )0(0) 0 0 t= = x x  
     In order to apply the Φ -function series method, is effected the change of 
variable: 1 1x u= , 1 3x u= , 1 3x u= 

 , 2 2x u= , 2 4x u= , 2 4x u= 
.  

     The IVP (17) can be expressed as: 

 
1 1

2 22 2 2 2 0 0 0 0
1 1

3 3 1 2

4 4

sin( ) sin( )0 0 ,
t

u u
u uO I F t F t
u uM K M C m m
u u

ω ω× ×
− −

   
         + = −              
   









0
0

(0) .
0
0

 
 
 =
 
  
 

u
 (18) 

3.1 Resolution of a seismic model (2DOF) by Φ -functions series method 

Consider the two-story frame subjected to an earthquake ground motion [7] 
(Fig. 5).  

 

Figure 5: Two-story frame. 

     The dynamic equilibrium equation of motion is: 
 1 1 1

2 2 2

2 0 3 4 2 2 0 1
( )

0 2 2 3 0 1 g

x x xm c c k k m
u t

x x xm c c k k m
− −             

+ + = −             − −             

 



 

 (19) 

     If 2 0 1
( )

0 1 g

m
u t

m
  
  
  



 is a harmonic matrix forcing function, i.e. 

0 0

0 0

sin( )2 0 1
( )

sin( )0 1 g

F tm
u t

F tm
ω
ω

   
=    

    


 then equation (19) is: 

 0 01 1 1

0 02 2 2

sin( )2 0 3 4 2
sin( )0 2 2 3

F tx x xm c c k k
F tx x xm c c k k

ω
ω

− −            
+ + = −           − −            

 

 

 (20) 

     In notation more compact and normalizing the equation (20), is obtained: 
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 1 1 0 0 0 0sin( ) sin( )( ) ( ) ( )
2

tF t F tt M C t M K t
m m
ω ω− −  + + = − 

 
 x x x  (21) 

at the moment that the earthquake occurs, it is very reasonable to assume that the 
structure is at rest.  
     To solve the IVP: 

 1 1 0 0 0 0sin( ) sin( )( ) ( ) ( )
2

tF t F tt M C t M K t
m m
ω ω− −  + + = − 

 
 x x x  (22) 

with (0) 0=x , (0) 0=x , [ ]0,t T∈ ,  
using the methodology of the Φ -functions, the new expression for the IVP 

 
1 1

2 22 2 2 2 0 0
0 01 1

3 3

4 4

( ) ( )
( ) ( )

0 0 sin( ) sin( ) ,
( ) ( ) 2
( ) ( )

t

u t u t
u t u tO I F Ft t
u t u tM K M C m m
u t u t

ω ω× ×
− −

   
         + = −         
      
   









 (23) 

(0) = 0u  where 1 2 1
2 3

kM K
m

− − 
=  − 

 and 1 3 1
2 42

cM C
m

− − 
=  − 

. 

     The variable is introduced in order to make easier the elimination  
the disturbance’s function of the IVP (23), following the Steffensen’s techniques 
[8, 9]. 

0
5 0sin( )

2
Fu t
m

ω= − , obtaining a new IVP. 

 

 

1 1

2 22 2 2 2 2 1
1 1 0 0 0 0

3 32 1 0

4 41 2 1 2 1 1

5 5

( ) ( )
( ) ( )

sin( ) cos( )( ) ( ) 0 0 sin( )
2 2

( ) ( )
( ) ( )

t

u t u t
u t u tO I O

F t tu t u tM K M C O t
m

u t u tO O O
u t u t

ω ω ωω
× × ×
− −

×

× × ×

   
   

          + = −             
   
   











 (24) 

 
with (0) = 0u . 

     To invalidate the function of disturbance, the differential operator ( )D B+  
is applied to  (24), where B is the following matrix 

 2 2 2 2 2 1

2 2 2 2 2 1

1 2 1 2 1 1

O O O
B O O

O O

× × ×

× × ×

× × ×

 
 = Ω 
 Ω 

, with 
2 1

1
2×

− 
Ω =  − 

 and ( )2
1 2 0 0ω×Ω =  (25) 

obtaining the extended IVP  

 
1 1

2 22 2 2 2 2 1 2 2 2 2 2 1
1 1

3 32 1 2 2 2 2 2 1
1 1

4 41 2 1 2 1 1 1 2 1 2 1 1

5 5

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

u t u t u
u t u tO I O O O O
u t u tM K M C O O O
u t u tO O M K M C O
u t u t

× × × × × ×
− −

× × × ×
− −

× × × × × ×

   
               + Ω +         Ω Ω Ω      
   
   

 

 

 

 

 

1

2

3

4

5

( ) 0
( ) 0
( ) ,0
( ) 0
( ) 0

t
u t
u t
u t
u t

   
   
   
   =
   
   

     

 (26) 
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( )(0) 0 0 0 0 0 t=u , 0
0(0) 0 0 0 0

2

tF
m
ω = − 

 
u , 

which is integrated exactly using the Φ -functions series algorithm described in 
[6].  
     Choosing the following values for the structural variables [7]: 

2

1.0 
.

k sm
in
⋅

= , 5%ζ = , 2  n
rad

s
ω π= , 0 10 F kip= , 

0 4 rad
s

ω =  and 1 T s= . 

     The IVP is: 
 2 2

1 1 1 1
2 2

2 2 2 2

3
(0)2 0 10sin(4 ) 016 810 5 ,  
(0)0 1 2 10sin(4 ) 08 12

5 5

x x x xt
x x x xt

π π
π π

π π π π

 −   −            
+ + = − =               −              − 
 

 

 

 (27) 

making the change of variable 1 1x u= , 1 3x u= , 1 3x u=   and 2 2x u= , 2 4x u= , 

2 4x u=  , the new IVP is: 

 1 1

2 22 2

3 3

2 24 4

5 5

0 0 1 0 0
( ) ( ) 00 0 0 1 0
( ) ( ) 038 4 0( ) ( ) 5sin(4 )10 10
( ) ( )2 10sin(4 )8 12 0

5 5( ) ( ) 20cos(4 )
0 0 0 0 0

u t u t
u t u t
u t u t t
u t u t t
u t u t t

π ππ π

π ππ π

− 
      −      
 −     −     + = −
     

−     −            
 











,




 
1

2

3

4

5

(0) 0
(0) 0
(0) .0
(0) 0
(0) 0

u
u
u
u
u

   
   
   
   =
   
   

     

 (28) 

     A matrix which annihilates the disturbance function is: 
 0 0 0 0 0

0 0 0 0 0
,0 0 0 0 1

0 0 0 0 2
0 0 16 0 0

B

 
 
 
 = −
 

− 
 
 

 (29) 

applying the operator ( )D B+  to the system (28) we obtain the extended IVP: 
 

1 1

2 22 2

3 3

2 24 4
2 2

5 5

0 0 1 0 0 0 0 0 0 0( ) ( )0 0 0 1 0 0 0 0 0 0( ) ( )3 0 0 0 0 08 4 1( ) ( )10 10
0 0 0 0 0( ) ( )28 12 2

5 5( ) ( ) 128 64
0 0 16 0 0

u t u t
u t u t
u t u t
u t u t
u t u t

π ππ π

π ππ π
π π

 
    
    
 −   − −    + +
    

−    − −     −     
 

 

 

 

 
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1

2

3

4

5

( ) 0
( ) 0
( ) ,0
( ) 0

24 8 ( ) 00
5 5

u t
u t
u t
u t
u tπ π

                =         −        

 (30) 

( )(0) 0 0 0 0 0 t=u , ( )(0) 0 0 0 0 20 t= −u , 
that is integrated exactly by the following algorithm the Φ -functions series , 
applied to this problem 
 ( )0 0 0 0 0 0 0 t= =a u  (31) 

2 2

1 0

2 2

0 0 1 0 0
00 0 0 1 0
038 4 0 010 10

2 08 12 0
5 5 20

0 0 0 0 0

π ππ π

π ππ π

 
   
   
 −  −   = −
   

−   −   −   
 
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from k = 1 up to n calculates: 
0 0 1 1( ) ( )k h hΦ +Φu = a a  

0 k=a u  

2 2

1

2 2

0 0 1 0 0
00 0 0 1 0
038 4 0 5sin(4 )10 10

2 10sin(4 )8 12 0
5 5 20cos(4 )

0 0 0 0 0

k kh
kh
kh

π ππ π

π ππ π

 
   
   
 −  −   = −
   

−   −   
   

 

a u

 

following k. 
 

  

Figure 6: The decimal logarithm 
of module of the relative 
error of the solution 

( )tu . 

Figure 7: The decimal logarithm 
of module of the 
relative error of the 
position ( )tx . 

     Fig. 6 shows the graph of the decimal logarithm of module of the relative 
error of the solution ( )tu ,  vs t, calculate using (31), step size 0.01h =  and 50 
digits, with the numerical integration codes LSODE with 2510tol −= , 
ROSENBROCK with abserr = 10-30, GEAR with 2510errorper −=  and 
TAYLORSERIES with abserr = 10-25. 
     Fig. 7 shows the graph of the decimal logarithm of module of the relative 
error of the solution ( )tx , vs  t, obtained with 50 digits, calculated by means of 
(31), with two Φ -functions and step size 0.001h = , compared with the 
numerical integration codes NEWMARK BETA-METHOD with 1/ 2δ = , 

1/ 4α = , 0.001h =  and WILSON THETA-METHOD with 1/ 2δ = , 1/ 6α = , 
1.4θ = , 0.001h = . Analogous results are obtained for the velocity ( )tx . 
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4 Conclusions 

The method of numerical integration of Φ -functions series is based on the ideas 
developed by Scheifele in his Γ -functions series method. The Φ -functions 
series method has an advantage over the Scheifele method to integrate exactly 
the perturbed problem, transforming it into second-order homogeneous problem 
which is able to integrate exactly with two first Φ -functions. 
     The good performance and accuracy of the Φ -functions series method is 
shown by comparing numerical results obtained in the resolution of a SDOF and 
2DOF with the results calculated with other well known integrators, such as 
ROSENBROCK, GEAR, TAYLORSERIES, NEWMARK BETA-METHOD 
and WILSON THETA-METHOD. 
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