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Abstract 

In this paper forming of the stiffness and mass matrices for a bar with semi-rigid 
connections depending on the level of rigidity of the joint connection will be 
presented. These two matrices are introduced into well-known computer 
programs to be modified for the dynamic design of a plane linear system whose 
connections are semi-rigid. The influence of semi-rigid connections on the 
change of dynamic characteristics is illustrated using numerical examples. 
Horizontal seismic forces and maximal horizontal displacements of a frame are 
computed according to Serbian regulations, based on the circle frequencies and 
vibration periods of free horizontal frame vibrations calculated for different 
levels of connection rigidity. The results obtained are presented in diagrams. 
This paper will also briefly present the results of an integral experimental 
investigation of seismic performances of the prefabricated reinforced concrete 
structural system AMONT, developed in Serbia and intended for construction of 
various types of modern industrial halls. The study has been carried out for the 
purpose of attesting the structural behaviour in seismic regions, particularly its 
specific connections and links. It is concluded from the results obtained that the 
rigidity level of connections should not be neglected, particularly in the analysis 
of prefabricated structures. The design allowing for semi-rigid connections is 
especially significant in earthquake engineering, because seismic forces cause 
the joint connections to become slack, which has not been adequately taken into 
consideration in up-to-date dynamic analysis. 
Keywords: semi-rigid connections, stiffness matrix, consistent mass matrix, 
circle frequency, vibration period, pre-cast reinforced concrete structural 
system, seismic design. 
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1 Introduction 

The first step in structural analysis is the choice of the so-called idealized design 
model, which is used for the approximation of the considered structure. Structure 
geometry, the manner of support, connections of members in joints and load, as 
well as mechanical properties of the structure materials, are idealized by the 
model. It is always required that an idealized model as far as possible 
approximates the real structure and that it is simple and convenient for the 
practical design of the structure. In the classical theory of structures, connections 
of members in joints of linear systems are the most often idealized as ideally 
pinned or absolutely rigid.  
     Many worldwide researches, based on numerical simulations and 
experimental results, having been carried out during the last 20 years, indicated 
that a great number of connections of members in joints of linear systems cannot 
be classified either as ideally pinned or as absolutely rigid. It is noticed that the 
level of rigidity of connection is of particular significance in the case of pre-cast 
structures, because even a low level of rigidity of pre-cast connections affects the 
redistribution of action effects, the critical load value and the buckling length of 
the members, as well as the basic dynamic properties of the structure. 
     The design procedure for structures with semi-rigid connections under 
dynamic (particularly seismic) load, which is the subject of this paper, is based 
on the classical deformation method. Having in mind that matrix formulation of 
a problem is convenient for structural analysis, it is applied to the design of the 
considered systems. 

2 Interpolation functions for member with  
semi-rigid connections 

In the case of a straight member bending in plane, the relationship between 
displacement v(x) of whichever point of a member axis and parameter of 
displacements at the member ends can be the most easily obtained starting from 
homogeneous differential equation of bending: 

4

4
EI 0d v( x ) ,

dx
=   (1) 

 
whose solution can be written as a polynomial of the third order, which follows: 

2 3
1 2 3 4v( x ) x x x .α α α α= + + +          (2) 

     Coefficients αi (i=1,2,3,4) are defined from boundary conditions at the 
member ends. Interpolation functions with a shape of Hermit’s polynomials 
determined for a fixed-end member are given in (Sekulovic [1]). In the case of a 
member with semi-rigid connections at the ends i and k, interpolation functions 
(2) can be derived from differential equation (1) and boundary conditions. 
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     When unit translation q1=1 is applied to the joint i of a member, while all 
other generalized displacements are equal to zero, what follows can be written 
according to the fig. 1.: 

1 11 1* *ik ik
ik ik ik ki ki ki ki ik

ik ki

b b
( ) ; ( )

a a
α µ µ µ α µ µ µ

   
= − − = − −   
   l l

    (3) 

where µik and µki are rigidity level of joint connections at the ends of a member, 
which can be determined numerically or experimentally. 

 

 

Figure 1: The state q1=1.0. 

     Boundary conditions for semi-rigid connections at the ends i and k of a 
member ik, from which coefficients αi (i=1,2,3,4) appearing in expression (2) 
can be determined, are written in the following form: 

2 3
1 2 3 4

2
2 2 3 4

1 1 0
0 1 12 3

i k

i ik k ki

v( x ) v v( x ) v
x x

( x ) ( ) ( x ) ( )
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ϕ ϕ α α ϕ ϕ α α α α∗ ∗

= = = = = + + + = = = 
= = = − − = = + + = − −  

l l l
l

l ll l

     (4) 

     Then, according to (2), the first element of the matrix of interpolation functions is: 

1
2 3

1 1 2
211 ik ki ik ki

q ikN ( x ) v( x ) ( ) x x x .
α α α α

α
∗ ∗ ∗ ∗

∗ ∗
=

+ +
= = − − − +

l l l
    (5) 

     Interpolation function N*
1 represents Hermit’s polynomial of the first order 

and its diagram is shown in fig. 1. In the limit case when a member is rigidly 
connected at its ends i and k (rigidly fixed-end member), that is 1ik kiµ µ= = , 
expression (5) has already known value (Sekulovic [1]). 
     Similarly, in the case when unit rotation q2=1 of the joint i, unit translation 
q3=1 and unit rotation q4=1 of the joint k are applied separately, while all of the 
others generalized displacements are equal to zero, interpolation functions N*

2, 
N*

3 and N*
4, respectively, can be determined, so that the matrix of interpolation 

functions can be shown in the following form: 

1 2 3 4N N ( x ) N ( x ) N ( x ) N ( x ) ,∗ ∗ ∗ ∗ ∗ =       (6) 

where 

 © 2009 WIT PressWIT Transactions on The Built Environment, Vol 104,
 www.witpress.com, ISSN 1743-3509 (on-line) 

Earthquake Resistant Engineering Structures VII  107



 

2 3
2 2

2 3
3 2

2 3
4 2

2

21

2 2

ik ki ki ik ki ki
ik

ik ki ik ki
ik

ik ki ki ik ki ki
ik ik

l
N ( x ) x x x ,

l

N ( x ) ( )x x x ,

N ( x ) ( )x x x .

µ µ α µ µ α
µ

α α α α
α

µ µ α µ µ α
µ α

∗ ∗
∗

∗ ∗ ∗ ∗
∗ ∗

∗ ∗
∗ ∗

− + − +
= − +

+ +
= − + −

+ − + −
= − − +

l

l

l l l
l l

l
l l

  (7) 

     Matrix N* is the matrix of interpolation functions or the matrix of shape 
functions for semi-rigidly fixed-end member. Interpolation function N*m(x) 
represents an elastic line of a semi-rigidly fixed-end member due to generalized 
displacement qm=1 (m=1,2,3,4) while all of the others generalized displacements 
are qn=0, n≠m. 

3 Stiffness matrix of semi-rigidly fixed-end member 

The stiffness matrix of a semi-rigidly fixed-end member is obtained after the 
second derivatives of interpolation functions have been determined and looks 
like: 

1

2
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     When the axial forces effect on deformation is taken into account, the 
stiffness matrix of a semi-rigidly fixed-end member can be written as follows: 
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where 
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         (9) 

     The expressions for 22 23 24 33 34 44k ,k ,k ,k ,k ,k∗ ∗ ∗ ∗ ∗ ∗  are derived as functions of 

ik ki ik ki, , ,α α µ µ∗ ∗  too, Zlatkov [2]. 

4 Consistent mass matrix of a semi-rigidly fixed-end member 

In deriving the motion equations of a member, the mass matrix can be adopted as 
consistent mass matrix or as concentrated masses matrix. Consistent mass matrix 
is a symmetrical and positively definite square matrix of order n, where n is the 
number of degrees of freedom. The form of the mass matrix m is the same as that 
one of the stiffness matrix k. 
     Starting from interpolation functions for a semi-rigidly fixed-end member, 
given in (5) and (7) the elements of a consistent mass matrix can be derived in 
the following form: 

0

ρF 1 4mn m nm N ( x )N ( x )dx , m,n , ...,∗ ∗ ∗= =∫
l

l    (10) 
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            (11) 

     Introducing (5) and (7) into (10), after multiplication and integration, the 
following terms are obtained: 
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2 2 2 2 2ρF 4 6 8
420 ik ki ki ik ki ki ik ik ik( ) ( ) ,µ µ α µ µ µ α µ α∗ ∗ ∗ + + + − + − 

l l l l l

        (12) 

as well as 12 13 14 23 24 34m ,m ,m ,m ,m ,m∗ ∗ ∗ ∗ ∗ ∗  (Zlatkov [2]). 
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5 Some results of the experimental investigation of precast 
reinforced concrete structure connections 

For the purpose of attesting of a prefabricated structure, it is enormously 
important to know the behaviour of its joints and links in linear and deeply 
nonlinear domain. Taking into account uniqueness and specificity of applied 
connections, these data could be obtained only by quasi-static nonlinear tests up 
to the failure by use of the full-scale connection models. The subject of our 
investigation is the pre-cast reinforced concrete (RC) structural system AMONT-
Krusce, developed in Serbia, which contains many different connections that 
could be treated. In this phase of investigation laboratory tests of the AMONT 
characteristic joints and links under simulated adequate load: connection of the 
corner column to the beam of the floor structure, connection of the floor element 
with the beam of the floor structure, as well as connection column to foundation 
were carried out. The bearing capacity of the weaker place of the corner column, 
where it is connected to the beam of the floor structure, and bearing capacity of 
the beam strengthened with connection to the floor element were tested too 
(Ristic et al. [3]). 
     Worthwhile experimental results were obtained from these tests, which 
enabled successful analytical verification of the system stability and publishing 
of the corresponding attested documentation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2: Disposition of the experimental model of the connection column to 
the foundation with the equipment used. 

     The results of only one test of the connection column to foundation are 
presented. Bearing capacity and deformability of this connection of pre-cast RC 
column 50/50cm to foundation glass was investigated. Static vertical axial force 
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and transverse increasing cyclic force up to the failure were applied as loading. 
The input axial force simulates an expected gravity load in the considered cross 
section of the column during exploitation. Disposition of the model with 
equipment used for the quasi-static test is shown in fig. 2.  
 

Figure 3: Relation cyclic force-displacement of the column top and relation 
moment-curve (base LVDT-1 and LVDT-3). 

     The two-sign moment at the connection column to the foundation glass is 
simulated by applying cyclic displacement at the column end. The amplitude of 
the column top displacement was increased successively monotonously up to 
nonlinear domain of behaviour of the treated connection and the column as well. 
     Relations force-displacement and moment-curve at the connection column to 
foundation are shown in fig. 3. 

6 An example of seismic design of a system with  
semi-rigid connections  

The well-known computer program STRESS is intended for linear elastic 
analysis of plane or space structures. There are some programs, which are 
developed based on STRESS as independent for the purpose of further 
processing. At the Civil Engineering Faculty in Nis, Serbia, Prof. M. Stankovic 
has evaluated the program SASS, which is intended for seismic analysis of 
structures according to Serbian code and enables the calculation of basic 
dynamical characteristics and seismic action and effects (Stankovic et al. [4]). 
     Design of structures with semi-rigid connections differs from the standard 
procedure only in commands containing data about members, i.e. it is necessary 
to form stiffness matrices of members. Instead of giving cross-section 
characteristics of prismatic members (area and moment of inertia for the main 
axis) through the command MEMBER PROPERTIES PRISMATIC, properties  
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Figure 4: Static scheme and dynamical model of a RC frame of the AMONT 
prefabricated structural system. 

of a member are described through the command STIFFNESS GIVEN, in which 
case the basic stiffness matrix elements for semi-rigidly connected member are 
input directly. 
     As an illustration of this application to frames with semi-rigid connections, 
the frame structure, presented in fig. 4 is considered. It is a two-floor RC frame 
of the AMONT prefabricated structural system, Morava Krusce, Serbia, with a 
span of 24m, the column cross section 50x50cm and the beam cross sections as 
shown at fig. 4. Based on the results of previously mentioned tests of the 
connections, it is evident that the connection column to foundation is almost 
absolutely rigid and because of that the rigidity level is adopted as 
µ61=µ72=µ83=η=1 (fixed-end member), while the connection beam to column 
behaves as 75% fixed, so it is adopted 
µ12=µ21=µ23=µ32=µ45=µ54=µ41=µ53=µ27=ξ=0.75. For the purpose of comparing 
dynamic characteristics, as well as displacement of the structure top, depending 
on the rigidity level of the connections beam to column, the calculation is carried 
out for three examples of frames. It is taken η=1 for column to foundation 
connection in all cases, and in each example different value for ξ, i.e. 0, 0.75, 1.  
     According to the expressions (9), for geometrical characteristics of the 
members of the system shown in fig. 4, the elements of base stiffness matrices 
are calculated. For example, stiffness sub-matrix (Stankovic et al. [4]) for 
members 1 and 2 is: 

1 2

580833 3 0 0
0 1606 5 9639 4
0 9639 4 82547 2

* *
.

k k . . .
. .

 
 = = − 
 − 

 

     This numerical data is used for defining the member properties in input file 
(SASS) as follows: 

1 STIFFNESS GIVEN 580833.3 0. 0. 0. 1606.5 -9639.4 0. -9639.4 82547.2 
     For other members the same calculation has been carried out (Zlatkov [2]).  
     The part of results of the seismic design according to Serbian Regulation is 
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shown in diagrams below: 



 

Figure 5: Frame vibration period T and horizontal displacement u of the 
frame top for different rigidity level connections. 

7 Conclusion 

It can be concluded from the results obtained that the structure with an absolutely 
rigid beam to column connections is too rigid, while that one with pinned 
connections is too flexible and its period of vibration and displacements 
exceeded the values allowed by the Serbian Regulations. 
     Design of seismic resistant structures has to be a compromise between 
rigidity and flexibility; that means the structure has to be moderately flexible. 
The example with semi-rigid beam to column connections, where the adopted 
level of rigidity of connection is ξ = 0,75, fulfil this requirement because its 
period of vibration and displacement at the top of the structure are in the frame 
of values allowed by the Serbian Regulation. This fact is very important in the 
case of pre-cast reinforced concrete structures, particularly because it is simpler 
to construct a semi-rigid connection than a rigid one. 
     Design allowing for semi-rigid connections is especially significant in 
earthquake engineering because seismic forces cause the joint connections to 
become slack. The rigidity level of connections should not be neglected, in 
seismic design, particularly in the case of pre-cast reinforced concrete structures.  
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