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ABSTRACT 
We developed a methodology for modelling climate change impacts on reservoir levels and to evaluate 
the applicability of the model into the process of policy evaluation. We start by performing the 
technique of Quantile Mapping to apply bias correction in two Climate Change (CC) General 
Circulation Models (GCM) models (HADGEM and CNRM) based on an overlapping period of ten 
years. This data is used as input into a two state Markov Chain model to generate a stochastic rain 
generator model. We then suggest an alternative method to perform a smooth transition from the 
historical data to long term climate forecasting. These stochastic rainfalls are the input to a calibrated 
runoff model that is part of a dynamic simulation system incorporating the alternative policies used for 
the reservoir. This method created a realistic decision support tool, incorporating the uncertainty 
associated with the CC to evaluate management policies. We applied this methodology on the 
Cantareira reservoir, one of the largest drinking water systems in the world. It was concluded that the 
“seasonal policy” (RAC1) is more robust to maintain a constantly higher storage level in relation to the 
alternative. The climate change analysis indicates a steady increase in storage and overflow with time. 
Keywords:  stochastic rainfall, policy evaluation, bias correction, climate change, decision support. 

1  INTRODUCTION 
The traditional approach for planning reservoir management decisions is based on historical 
records of pluviometry, assuming its patterns will remain valid in the future. However, due 
to the current climate change evidences this approach is no longer reliable. Therefore decision 
support tools, using physical modelling with policy definition, needs to incorporate the 
forecasts of climate change and its associated uncertainty. 
     As mentioned in [1] “Adaptation to climate change presents a complex methodological 
challenge. It calls for individuals to make decisions with potentially long-term consequences 
based on incomplete knowledge and uncertain information”. 
     Several studies have investigated the effects of climate change on reservoirs [2]–[7], the 
majority of these predicting worsening reservoir performance and higher storage capacity 
requirements due to climatic change. Most of these studies use General Circulation Models 
(GCMs) as drivers for the future Climate Change (CC) inflow in the system modelled. Some 
authors [7], [8] used an ensemble of current and future climate to characterize the variability 
through a set of possible scenarios, that are then used as inflow for rainfall-runoff models. 
     In this paper we are proposing to characterize the inflow uncertainty through a stochastic 
generated ensemble that feeds a rainfall-runoff model. This is the entry for a reservoir model 
that incorporates policy derived management, controlling the outflows of the system. The 
method proposed incorporates a two state Markov Chain (MC) model supported by a 
“signature” of the monthly pattern both for the historical record and for the bias corrected 
CC GCM models. The parameters of the MC are used to generate a smooth transition from 
the historical to the climate impacted models. 
     Based on this methodology we, developed a decision support tool for reservoir 
management strategies. We use the historical data of the Cantareira reservoir, responsible for 
almost half of the water supply to São Paulo (Brazil’s largest city). 
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     Historical records show that rainfall pattern of rainy summer, followed by dry winters, 
have seen more variation in the last 5 years than the previous 60 years recorded. 
     The Cantareira reservoir experienced a drought from 2014 to 2015 that resulted in the 
rationalization of the water supply. This reduction amounted up to 50% flow reductions for 
some millions in the city [9]. 
     During the crisis continuous stakeholder meetings were necessary to define the 
management of the reservoir, as the previous legal indicators did not contemplate this level 
of stress in the system. Another impact was a new proposition of the legal limits imposed by 
the stakeholders on the reservoir management [10], which is also incorporated in our 
implementation in this paper (i.e. RAC2). 

2  DATASET AND METHODS 
We have used the public data available daily (from 2006 to 2016) for the Cantareira reservoir 
[11] as a lumped system. 
     A generic view of the system we will simulate is shown in Fig. 1. 
     The component “Rainfall” integrates the effective runoff and incorporates both historical 
data and GCM with CC forecasted impact, it is related to block “Data wrangling” and 
“stochastic simulation” as presented in more detail in Fig. 2. 
 

 

Figure 1:  Schematic representation of the system. 

 

Figure 2:    Flowchart defining the simulation steps described in the paragraphs ahead. We 
have chosen HADGEM and CNRM models [12]–[14] for evaluation of CC 
impact here. 

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and the Environment, Vol 215, © 2018 IBM

146  Environmental Impact IV



 

 

2.1  Bias correction by Quantile Mapping 

As is well known, the biases present in the outputs from GCMs affect all aspects of the 
intensity range and must be corrected to provide the best input to the rainfall-runoff model 
[15], [16]. 
     The bias correction method adopted in this study consists of an empirical Quantile 
Mapping (QM) [16], [17]. This method aims to define a quantile-specific Transfer Function 
(TF) determined by the difference between simulated and observed empirical cumulative 
distribution functions (ecdf), over a common historical period, in our case 10 years. In the 
literature alternative names refer to the same technique as: statistical downscaling, quintile 
mapping, histogram equalizing and rank matching. 
     The QM correction we used is defined as: 

 𝑃𝑐𝑜𝑟,ௗ ൌ 𝑒𝑐𝑑𝑓ିଵ
௦, ቀ𝑒𝑐𝑑𝑓௪,൫𝑃௪, ௗ൯ቁ,                              (1) 

 𝑃𝑐𝑜𝑟,ௗ: the corrected value of precipitation for month m and day d; 
 𝑒𝑐𝑑𝑓ିଵ

௦,  is the inverse of ecdf (Empirical Cumulative Distribution Function) for the 

observation of the month m; 
 𝑃௪, ௗ is the raw (biased) data for month m, and day d. 

     In eqn (1) a daily based TF is given by the mismatch between both observed and raw 
inverse empirical cumulative distribution functions (quantile functions), during the 
calibration period:    𝑒𝑐𝑑𝑓ିଵ

௦, and  𝑒𝑐𝑑𝑓௪, . 
     Once the TF is determined, it is used in the rest of the simulation over the CC models. 
     The resulting QM correction for the CC models and the raw Cantareira is shown in  
Fig. 3. 
     It is interesting to notice that given the bias correction on the cdf on a period of 10 years, 
there are changes both reducing or increasing locally the discrepancy with the historical data, 
but the integral of the rainfall during this period is conditioned to the historical measurements 
as shown in Fig. 4. 
 

 

Figure 3:    HADGEM (green) and CNRM (orange) rainfall moving average window of 10 
days after QM correction, historical Cantareira rainfall in blue. 
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Figure 4:    Integral of rainfall with Historical data (red), HADGEN after QM (blue), CNRM 
(green). The lines superimpose until 2016, the calibration period. 

2.2  Markov Chain model to stochastic rainfall simulation 

Markov Chain (MC) models have been used to generate ensembles of similar temporal 
patterns. [7], [18] show successful applications to simulate rainfall. 
     The MC used here is based on a statistical parameterisation of the historical series by the 
probability of being in two possible daily states: “rain” or “not rain”, while the intensity of 
the rain event was adjusted by an Exponential Distribution. 
     The MC method is based on a sequence of random variablesሼ𝑥௧ሽ : 

𝑃ሺ𝑥௧ ൌ 𝑖௧| 𝑥 ൌ  𝑖,  𝑥ଵ ൌ  𝑖ଵ, … ,  𝑥௧ିଵ ൌ  𝑖௧ିଵሻ ൌ  𝑃ሺ𝑥௧ ൌ 𝑖௧| 𝑥௧ିଵ ൌ  𝑖௧ିଵሻ.        (2) 

     The amount of rainfall can be modelled as a sequence of random variables: 

ሼ𝑧௧ሽ, 𝑧௧ ൌ  𝑥௧𝑦௧,                                                        (3) 

where ሼ𝑥௧ሽis a sequence of discrete random variables that form a Markov Chain and ሼ𝑦௧ሽ a 
sequence of continuous random variables. 

 ሼ𝑥௧ሽ defines whether or not there was rain on day 𝑡  (i.e. 𝑥௧ ൌ 1, representing a rainy day 
and 𝑥௧ ൌ 0 representing a dry day), 

 ሼ𝑦௧ሽ sets the amount of rain (if any) on day 𝑡. 

     The transition probabilities are defined according with the day and the month, as follows: 

𝑝,, ൌ 𝑃ሺ𝑥௧ ൌ 𝑗 | 𝑥௧ିଵ ൌ 𝑖),  𝑖, 𝑗 ∈ ሼ0, 1ሽ,                                   (4) 

 𝑚 defines the month of the day 𝑡. 
 i and j are the two possible states (i.e. rain (1) or not rain (0)) represented by this MC 

process. 

     From this setup, we can generate stochastic series of rain that reproduce the historical 
patterns of a region defined from Monte-Carlo simulations. 
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 For this, the approximate form of 𝑝,,     is: 

𝑝,ଵ, ൌ
బ,భ,

భ,బ,ା బ,బ,
𝑝ଵ,ଵ, ൌ

భ,భ,

బ,భ,ା భ,భ,
,     (5) 

𝑝,ଵ,  𝑝,,  ൌ 𝑝ଵ,,  𝑝ଵ,ଵ, ൌ 1,     (6) 

where 𝑎,, represents the historical frequency at which the transition ሼ 𝑥௧ ൌ 𝑗, 𝑥௧ିଵ ൌ 𝑖ሽ 
occurred for the month 𝑚. The gamma, log-normal or exponential functions can be used 
approximate rainfall distributions ሼ𝑦௧,ሽ  for each month 𝑚, and 𝑦തതതത represents the average 
rainfall of rainy days. The exponential function provides a good fit to historical data. 
     Fig. 5 shows the MC parameters (P01 and P11) obtained after the QM bias correction for 
CC models scenario 2.6°C temperature increase. 

2.3  Simulating a smooth transition from historical to climate impacted scenario 

We consider that we are probably in a transition period between the historical and the CC 
impacted climate. The use of the MC technique allows us to explore a new approach, by 
simulating this transition of rainfall patterns smoothly. 
     Performing a gradual scenario change simulation consists of applying an intermediate 
transition parameter from the historical to any of the CC bias corrected scenarios. A simple 
way to define these intermediate parameters is to linearly interpolate the transition parameters 
(𝑝,ଵ,, 𝑝ଵ,ଵ, e 𝑦തതതത) over the years. Fig. 6 is an example of a transition occurring during a 10 
years span. 
     Fig. 7 Exhibits the changes in the average precipitation between the CC models and the 
historical patterns. An increase in the intensity of dry and wet periods can be observed when 
considering the CC models in the last years simulated. 

2.4  Runoff modelling 

To translate the forecasted precipitation from climate change models into inflow for the 
system, we calibrated a runoff watershed model based on the Australian Water Based Model 
(AWBM) [20] that is widely used in tropical regions. 

Figure 5:    MC probabilities P01 in dashed (Probability of do not rain (0) given it rained (1) 
the day before) and P11 full line (Probability of rain (1) given it rained (1) the 
day before) for the Historical (blue), CNRM (orange), HADGEM (green). 
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Figure 6:    Example of transition probability from Cantareira pattern (dark blue) to CC 
impacted (in colour for each year) until show pure CC at year 10 (light blue). 

 

 

Figure 7:    Monthly average rainfall from historical pattern (red), CNRM (green) 
HADGEM (blue). Notice that after 2016 the CC models tends to increase 
variability in relation to historical simulated. 

     Given the drought period had long dry periods in relation to historical data and due to 
difficulties in attaining a reasonable calibration for the dry period without compromising the 
wet period, we incorporated a groundwater element to the model (see Fig. 8). The 
groundwater store becomes active to maintain a minimum flow. The activation occurs only 
when the inflow is lower than a threshold and it facilitates the calibration with the specific 
focus on drought periods. 
     We have adopted a simplified Evapotranspiration based on historical monthly pattern of 
the region. Fig. 9 shows the resulting calibrated model. 
     With the runoff model calibrated we used both the stochastic model of the Cantareira and 
the CC simulations as inputs to provide the inflow to the reservoir model management. 
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Figure 8:    AWBM components and the new parameter used to define the base flow in 
drought periods, groundwater (blue). Here P: precipitation, E: 
evapotranspiration, BFI: Base Flow index, C and A are parameters representing 
surface area fraction and water storage capacity, with i: 1,2,3 representing three 
zones. (Source: adapted from [19].) 

 

 

Figure 9:    Calibration of the runoff model, red is historical data, green is modelled runoff 
from historical rainfall on daily data. Notice the driest period after mid-2013. 

 

2.5  Management of the reservoir operation 

The reservoir has storage capacity of 978 mm3 with drainage surface of 2300 km2, it is 
designed to feed a water treatment plant (WTP) and must maintain minimum flow in rivers 
for two different watersheds. 
     The system has a legally defined management process controlled by a Risk Aversion 
Curve (RAC) [10]. The RAC indicated the maximum allowed withdrawal rate for the WTP 
and the minimum flow for three rivers downstream. Fig. 10(a) show the “seasonal policy” 
system used until 2016 (RAC1) and Fig. 10(b) the newly adopted policy (RAC2). 
     The WTP has a pumping system able to treat 33m3/s; while the minimum legal outflow to 
the rivers ranges from 3 m3/s up to 8 m3/s according with the reservoir level and the priority 
defined by the RAC (not shown here). 
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(a) 

 
(b) 

Figure 10:    Risk Aversion Curve (RAC) indicate outflows imposed maximum (for WTP) 
and minimum (for rivers). RAC1 shown in (a) with maximum outflow related to 
reservoir level in a given month; and RAC2 shown in (b) with limit of outflow 
for WTP according with percentage of the storage without relation with month. 
(Source: adapted from [10].) 

3  STOCHASTIC SIMULATION OF CLIMATE  
CHANGE IMPACT IN THE RESERVOIR 

For the following plots, we show the real QM corrected data of Cantareira for the period 
before August 2016. After this date, all models incorporate the MC simulation as explained 
previously and, as such, can be analysed as a stochastic process with probabilities of reaching 
a certain level. 

3.1  Simulation of policy impact based in historical pattern 

For comparing the two policies, we used 100 Cantareira MC simulations and obtained the 
probabilities of reaching a reservoir levels shown in Fig. 11 (RAC1 in 11(a), RAC2 in 11(b)). 
It shows that under RAC2 there is a reduction in volumes stored as there is an increase in 
probabilities related to lower levels. 
     The impact of these levels in the effective allowed outflow feeding the Water Treatment 
Plant is shown in Fig. 12. Given that the normal operation for the city requires about 31 m3/s, 
this simulation shows for a long time a risk between 5% and 25% of a reduction in availability 
up to half of the normal operation necessity. 
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(a) 

 
(b) 

Figure 11:    Volumes stored simulated with MC Cantareira data, in (a) under policy RAC1; 
and (b) under RAC2. The latter provides lower levels in reservoir. 

 

Figure 12:    Flow allowed to be pumped to WTP, simulated under RAC1 policy, it show an 
increased risk with time. 
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3.2  Simulation of climate change impact 

Comparing the two CC models under RAC1 (see Fig. 13) we can clearly see they both show 
an increase in inflow and higher reservoir levels than the historical Cantareira pattern 
(comparing to Fig. 11(a)). 
     These models also indicate that there is an increase of reservoir overflow probability when 
the CC models are used. 
 

 
(a) 

 
(b) 

Figure 13:    Volumes stored, simulated under RAC1 policy, with CC model HADGEM (a) 
and CNRM (b). This last indicates higher fluctuations to lower levels in reservoir 
than the previous and both show an increase in inflow with time as reservoir 
levels tends to be higher with time. 
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4  CONCLUSION 
We have developed a methodology utilizing a stochastic generator of rainfall. It is used for 
incorporating CC signals and reservoir policy evaluation. 
     The CC simulations were obtained from two bias corrected CGM models (HADGEM  
and CNRM). 
     A stochastic simulation using Markov Chain was used to generate a pattern like the 
historical records and a new proposition, of a smooth transition from this pattern to the pattern 
obtained from the bias corrected CC models detailed. 
     The stochastic rainfall prediction was used as inflow in a calibrated runoff model to 
provide the effective recharge to the reservoir. The reservoir levels were simulated based on 
two policies, and the amount of water available for the water treatment plant calculated. 
     The analysis of these simulations indicates that using only historical patterns the new 
policy (RAC2) would provide lower levels in the reservoir. The impact of this inflows for 
the allowed withdraw feeding the WTP show an increase in probability of reduction in 
availability up to half of the normal operation in some months (simulation done until 2030). 
     The CC simulations show that both models (considering 2.6°C scenario) reduce the risk 
of low levels in the reservoir. 
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