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Abstract 

Due to the gradual depletion in the conventional resources, searching for a more 
rational road construction approach aimed at reducing the dependence on 
imported materials while improving the quality and durability of the roads is 
necessary. A previous study carried out on a sample of Egyptian soil aimed at 
reducing the road construction cost, protect the environment and achieving 
sustainability. RoadCem, ground granulated blast furnace slag (GGBS), lime and 
ordinary Portland cement (OPC) were employed to stabilise the Egyptian clayey 
soil. The results revealed that the unconfined compressive strength (UCS) of the 
test soil increased while the free swelling percent (FSP) decreased with an 
increase in the total stabiliser and the curing period.  
     This paper discusses attempts to reach optimum stabilization through: (1) 
Recognizing the relationship between the UCS/FSP of stabilized soil and the 
stabilization parameters using artificial neural network (ANN); and (2) 
Performing a backward optimization on the developed (ANN) model using 
general algorithm (GA) to meet practical design preferences. 
Keywords: clay, roadCem, slag, lime, ANN, GA, stabilisation, sustainability, 
artificial intelligent, swelling soil. 

1 Introduction  

Traditional road construction has proven to be very material and energy 
intensive. It demands import and export of enormous quantities of virgin 
materials. This is especially true in situations where the load bearing capacity of 
base soils are low or when other geotechnical conditions along the route of the 
road are not suitable [1]. The shortage of imported materials in many situations 
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and countries leads to an increase in costs. Also higher energy costs for 
excavation will bring higher costs for the end user.   
     As a society develops, larger quantities of waste materials continue to be 
generated by people and these mountains of waste are also becoming an 
environmental problem. The possibility to use this waste material as a 
replacement for the imported virgin material in road construction has been 
recognized as an option for many years. Only a limited portion of the waste 
stream could be brought to use on road constructions. Due to the gradual 
depletion in the conventional resources, searching for a more rational road 
construction approach aimed at reducing the dependence on imported material 
while improving the quality and durability of the roads is necessary [1].  
     Many chemical substances have been used to stabilise soils, e. g. GGBS, lime 
and OPC. Mathur et al. [2] showed that properties of the soil improved when 
treated with lime–GGBS blends. (FSP) and linear shrinkage decreased, while the 
UCS and CBR values increased [2]. RoadCem  is  a  blend  of  special  selected  
substances in various  percentages , it is an additive and OPC improver, used in 
soil stabilisation typically for road construction [1]. This results in the reduction 
of the required thickness of the pavement structures consequently reducing road 
costs and contributes to the solution of the problem of declining resource base 
for imported materials thus achieving sustainability [1].  
     A previous study was undertaken on a sample of clayey test soil chosen from 
east Cairo, Egypt [3]. The study concluded that the UCS increased with an 
increase in the total stabiliser and the curing period for the same combination. 
Replacement of 65% OPC by GGBS and lime increased the UCS, while 
replacement of 2% RoadCem by OPC caused further increase in the UCS of the 
test soil. The FSP of the test soil decreased with an increase in the total stabiliser 
and the curing period for the same combination of total stabiliser [3]. A summary 
of the used mixes is presented in Table 1.  

Table 1:  A summary of mix used by Ouf [3]. 

Mix 4 Mix 3 Mix 2 Mix 1 
35% OPC 100% OPC 2% RoadCem 2% RoadCem 

50% GGBS 33% OPC 98% OPC 
15% Ca (OH)2 50% GGBS 

15% Ca (OH)2 

 
     This paper aims to identify optimum soil stabilization for clayey soil to suit 
safe and economic road construction.  

2 Available data 

Ouf’s findings were re-analyzed in this investigation to understand the 
relationship between the stabilization parameters represented by the GGBS%, 
Lime%, OPC%, RoadCem and curing period versus both the UCS and the FSP, 
using artificial neural networks. A genetic optimization was applied in a 

254  Environmental Impact

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 162, © 201  WIT Press2



 

backward technique to reach an optimal set of stabilization parameters under 
practical site considerations.  
     Table 2 shows a summary of the information extracted from the tests 
presented in [3]. It can be noticed from the table that the maximum and 
minimum UCS after stabilization were 3682 kN/m2 and 687 kN/m2 respectively 
while the maximum and minimum FSP were 30% and 0% respectively, which 
have a lot of variation based on stabilizing parameters. 

3 Research methodology 

The methodology had two stages. Initially Neural Tools 5.5 was used and then 
the UCS was predicted for both training and testing. Due to the neural Tools 5.5 
has no transparent link between inputs and outputs, it is very difficult to perform 
backward analysis to determine the optimum set of inputs that may result in 
certain output. Accordingly, a more transparent ANN model for neural network 
was developed. A backward optimization as such is proposed on the same ANN 
model after training and testing. The variables in the proposed optimization 
problem are the stabilization parameters with an objective to reach a certain UCS 
keeping the FSP within a certain range. To implement the proposed approach, an 
Excel application was developed. After training and testing, a friendly-user 
interface to optimize the UCS for any set of stabilization parameters was used. 
The user can set any stabilization parameters which are linked automatically with 
the two ANNs sheets to reflect the expected UCS and FSP. With the automatic 
link between the stabilization parameters, this interface can function as an 
optimization model. Upon activating EVOLVER (GAs based optimization solver 
for Excel) can be used so that the user can get the optimum set of stabilization 
parameters. 

3.1 Behavior prediction 

The first stage is to identify the behavior of soil in terms of UCS and FSP under any 
combination of stabilization parameters. In this research ANN was proposed to be 
used for this prediction. First, an investigation for the suitability of using ANN in 
predication was carried out, and then a spreadsheet ANN model was developed 
which suit the current study.  
     To start the investigation, a simple to use ANN add-ins (Neural Tools 5.5) for 
Excel was used and the UCS was predicted. The results showed that, ANN can be 
used in predicting the UCS of the stabilized soil with good accuracy. A detailed error 
analysis was performed for the training and testing cases and these are shown in 
figures 3 and 4 respectively. While figures 5 and 6 show the error distribution for the 
FSP training and testing cases respectively.  
     It is very difficult to perform backward analysis to determine the optimum set of 
inputs that may result in certain output. Accordingly, a more transparent model for 
neural network was developed. 
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Figure 1: Research methodology for optimum soil stabilization. 

 

. 

Figure 2: UCS prediction using ANN (NeuroTool5.5 screenshot) 
 

     The developed model imitates the architecture and the process flow of an 
ANN with one hidden layer using spreadsheet modelling similar to Hegazy and 
Ayed [4]. The learning process was carried out through optimization where the 
errors between ANN predictions and actual results for the training set were 
minimized. The variables are the weights between ANN different layers. As 
such, the core of the model is an optimization formulation using a spreadsheet. 
Once the weights were determined, the model can then be tested using other set 
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Error Range Percentage of training 

cases 
Error value 

+/- 8 %  93.7 % Less than 8 % 
+/- 4 % 65.6 % Less than 4 % 

Figure 3: Error distributions for the UCS training. 
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+/- 16 % 77.00 % Less than 16 % 
+/- 12 % 52.00 % Less than 12 % 

+/- 8 % 26.00 % Less than 8 % 
+/- 4 % 13.00 % Less than 4 % 

Figure 4: Error distributions for the UCS testing. 
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Figure 5: Error distributions for the FSP training. 
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Figure 6: Error distributions for the UCS testing. 

 
of data then used to predict the outputs for any set of inputs. The reader can refer 
to [4] for more details. To train the ANN, 32 randomly selected cases were 
considered while the 8 rest cases were used in the testing phase.  
 

3.2 Design optimization 

As the Excel based ANN model of stage 1 with their hidden nodes link the 
stabilization parameters in the input layer with the design criteria in the output 
layer, the model can function as an optimization model in a reverse order in 
which the UCS (predicted) represents the objective function and the stabilization 
parameters (in the input layer) represent the decision variables to be determined 
(Stage 2). 
     A backward optimization as such is proposed on the same ANN model after 
training and testing. The variables in the proposed optimization problem are the 
stabilization parameters that can be varied to be determined under practical site 
and design constraints with an objective to reach a certain UCS keeping FSP 
within a certain range.    

4 Implementation and testing 

To implement the proposed approach, an Excel application was developed in 
three sheets. The first and the second are the ANNs models for the USC and FSP 
respectively. After training and testing, these two sheets represent the UCS and 
FSP predictors. The third sheet however represents the friendly-user interface to 
optimize the UCS for any set of stabilization parameters. The user can set any 
stabilization parameters preferences which are linked automatically with the two 
ANNs sheets to reflect the expected UCS and FSP, this interface can function as 
an optimization model. Upon activating EVOLVER, (GAs based optimization 
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solver for Excel) can be used so that the user can get the optimum set of 
stabilization parameters.  
     To test the developed model, practical ranges for the UCS were obtained from 
[5] who proposed guiding values between 345 KN/m2 and 1700 KN/m2 for base 
construction in low cost roads. The design parameters should be decided both on 
cost and performance, including all parameters involved to achieve an acceptable 
UCS value. For example, the minimum and maximum UCS is set to be 1000 
KN/m2 and 1800 KN/m2, respectively. Evolver is then used to maximize the 
UCS within the given range of minimum and maximum. All other stabilization 
parameters in addition to the FSP are also constrained within their specified 
ranges.  
     Optimization results show that it is possible to reach a UCS of 1791 KN/m2 
with a 9% FSP by considering a 0.12% of RoadCem, 6.2% of OPC, 0% of 
GGBS and lime at 30oC curing temperature for 19 days. Ouf and Al-Hakim [6] 
also found using the same model, that it is possible to reach a UCS of 
1792 kN/m2 with a 5% FSP by considering an 11% Lime/GGBS and a 7% binder 
(Lime + GGBS) at 37oC curing temperature for 27 days when using a test soil 
similar to some extent to the soil used in this investigation. 

5 Environmental effects 

Environmental conditions generally affect the performance of road pavements. 
For example, high temperature can accelerate hydration of stabilisers in road 
materials, resulting in loss in flexibility and consequent ravelling of the 
aggregate and brittle fracture of the layer. 
     High rainfall can result in a change in the moisture content of the subgrade 
materials. Under poor drainage conditions, materials adversely affect the 
pavement structure and its performance under traffic.  However, when RoadCem 
is used this mode of failure is largely eliminated [1]. It is noted that when 
RoadCem is used the mechanism of interaction between pavement structure and 
carbon dioxide in the atmosphere is totally different than in the case of 
traditional materials and as a result carbonation is not a problem [1]. The 
pavement structure may actually be isolated from carbon dioxide which leads to 
elimination of carbonation. 

6 Conclusions 

The main conclusions can be summarized as: 
1. A simple-to-use Neural Tools 5.5 can be used in predicting the UCS of the 
stabilized soil for both training and testing.  
2. A more transparent model for neural network was developed and a novel 
approach to understand the relationship between the stabilization parameters 
versus both the UCS and the FSP using ANNs that expedite the way for 
optimum soil stabilization was presented.  
3. This paper reached the optimum stabilization for clay soil by: (1) Recognizing 
the relationship between the UCS of stabilized soil and the stabilization 
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parameters. Two ANNs were developed to predict the UCS and the FSP based 
on any set of stabilization parameters. The behaviors were successfully 
investigated using the ANN approach; the acceptable errors for both training and 
testing confirm this conclusion; and (2) Performing a backward optimization 
using GA which shows its ability to determine an optimum set of stabilization 
parameters under practical constrains.  
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