
Data mining: an automatic tool for retrieval of
data from a system’s requirements

R. Ibrahim1, N. Ibrahim2 & N. Ismail2
1Research Management and Innovation Center (RMIC), Universiti Tun
Hussein Onn Malaysia (UTHM), Batu Pahat, Johor, Malaysia
2Faculty of Information Technology and Multimedia,
Universiti Tun Hussein Onn Malaysia (UTHM), Batu Pahat, Johor,
Malaysia

Abstract

Automatic information retrieval is usually used to ease the manual task of certain
applications. In data mining, automatic information retrieval is used to retrieve
specific data from a specific domain. We use this concept to introduce an
automatic tool for data retrieval from requirements of a system, where the tool is
used to generate the test cases automatically according to the system’s
requirements. The tool uses two steps for generating test cases. First, the
system’s requirements are transformed into a use-case diagram. Second, the use
cases are then used to automatically generate the test cases. The tool allows a
user to layout the requirements of a system via a use-case diagram in the
workspace provided. In the workspace, a ToolBox is used to create, edit and
display the use-case diagram. The ToolBox consists of standard symbols and
arrows for a use-case diagram such as symbols for an actor and a use case, and
arrows for connecting an actor with use cases as well as arrows for extends and
uses. The workspace also allows a user to type-in the text for each of the use
cases used. Once the use-case diagram has been finalized, it can be saved and
edited at any other time. The engine of the tool will take all the use cases from
the use-case diagram and search the keywords used in the provided database.
Once the use case used matches the keyword inside the database, the engine will
automatically generate its respective test cases according to its use case.
Keywords: information retrieval, automatic generator, use-case diagram.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 193

doi:10.2495/DATA070191

1 Introduction

Data mining is the process of automatically searching large volumes of data for
common knowledge discovery using tool [8]. The term data mining is often used
to apply to two separate processes of knowledge discovery and prediction [7].
Knowledge discovery provides explicit information that has a readable form and
can be understood by a user while prediction provides future events that may be
transparent and readable in certain domain.
 In data mining, automatic information retrieval is used to retrieve specific
data from a specific domain. We use this concept to introduce an automatic tool
for data retrieval from requirements of a system, where the tool is used to
generate the test cases automatically according to the system’s requirements. The
generated test cases can be used as a checklist for a programmer or a developer
of a system to validate that the system meets its requirements. The purpose of
producing the tool is to reduce the cost of testing the system. System testing is
important when developing a system. In many organizations, 30 to 50 percent of
system development costs goes to testing the system [3]. Testing is defined as an
attempt to reveal errors in a system. The conventional way of system
development life cycle (SDLC - analysis, design, prototyping, testing) proposed
that testing a system is done at a later stage. However, delaying the testing at a
later stage will make the system testing cost more and expensive to correct the
errors. In object-oriented system development (OOSD), system testing is
proposed to be done as soon as the system’s requirements are available. This will
avoid postponing the system testing at the end of the system creation. Thus, it
will minimize the errors and cost of fixing the errors.
 This paper discusses on information retrieval for system testing where testing
shows the present of faults and proposes an automatic testing tool to test whether
a system meets its requirements or not. The rest of the paper is organized as
follows. Section 2 presents the related work and Section 3 discusses the system’s
requirements. We also present our idea on how to convert the use cases into test
cases in Section 3. Section 4 discusses our tool in details, in particular on how to
retrieve data from the database using the engine of the tool. Finally, we conclude
our paper in Section 5 and give some suggestions for future work of the tool.

2 Related work

In system testing, test cases are manually generated from use cases. Heumann [3]
discusses on how to manually generate test cases from use cases using the basic
flow of events and alternate flows of events. The scenarios are first created from
combination of the basic flow and alternate flows. These scenarios are then used
as the basis for creating test cases. Wood and Reis [9] presents an example on
how to derive test cases and test scenarios from a use case. However, deriving
test cases manually consumes more time and requires more tedious job.
Therefore, many researchers study ways to automate the process of generating
test cases, for example, Wee et al. [6], Hui and Hee [4] and Gutierez et al. [2].
Wee et al. [6] study the automation of test cases using the behaviour of object-

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

194 Data Mining VIII: Data, Text and Web Mining and their Business Applications

oriented classes, where the test cases are automatically generated from the closed
specifications of classes. They propose a scheme that combines the setup
process, test execution and test validation into a single test program for testing
the behaviour of object-oriented classes. The test program is generated
automatically using the test cases and closed specifications of the classes.
 Hui and Hee [4] study the validation of input and propose an approach for
automated verification and test case generation of input validation from source
code. Their work is concentrated on program source codes to get the input
validation for generating the test cases. Gutierez et al. [2], on the other hand,
propose an approach for automatic generation of test cases from use cases for
web applications using activity diagrams representing the behavioural model of
the system’s requirements.
 For our approach, instead of testing the software at the later stage, this
research will use use-case diagrams to automatically generate the test cases. The
test cases will then been analyzed in order to validate the requirements of the
system. This will give more strength to our approach of using use-case diagrams
for system specification, where ambiguity of the system’s requirements will be
reduced.

3 The system’s requirements

In UML specification, requirements analysis and design are usually done using
diagrams [1]. One particular diagram (a use-case diagram) is used to specify
requirements of the system. In a use-case diagram, two important factors are
used to describe the requirements of a system. They are actors and use cases.
Actors are external entities that interact with the system and use cases are the
behaviour (or the functionalities) of a system [5]. The use cases are used to
define the requirements of the system. These use cases represent the
functionalities of the system. Most often, each use case is then converted into a
function representing the task of the system. Therefore, we can convert from
each of the use case into one test case or many test cases. The relationship of the
conversion is either one to one or one to many. However, if we have many use
cases, then we will have many test cases. Therefore, an automatic tool would be
more wisely used in order to generate test cases from use cases of any system.
 In most cases, use cases are developed based on the user perspective since the
user is going to use the system. In order to make sure that the system does the
requirements as it supposed to do, the test cases are designed according to the
tester perspective. These test cases are basically designed to test the input and
output of a system. Most often, the input, key-in by the user, will be accepted by
the system. The system then processes the input and produces the required output
according to its specification.
 In this paper, we present an example of an application for monitoring system
of a postgraduate student submitting his/her progress report to Centre of
Graduate Studies. The requirements of the system include the capability to
submit progress report using the provided form, view the submitted progress
report and evaluate the submitted progress report. These three requirements are
then transformed into a use-case diagram as shown in Figure 1.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 195

Figure 1: A use-case diagram for a monitoring system of a postgraduate
student.

 Figure 1 shows a simple use-case diagram for a monitoring system of
postgraduate student where a postgraduate student (an actor) can submit his/her
progress report to Centre of Graduate Studies. From Figure 1, a student is able
to do two tasks: submit a progress report and view a progress report. A focus
group is able to view and evaluate the progress report while the centre is able to
view the progress report.
 Most often, use cases represent the functional requirements of a system. If the
requirements are gathered correctly, then a good use-case diagram can be
formed. In UML, sequence diagrams are usually used to manually record the
behaviour of a system by viewing the interaction between the system and its
environment [5]. These sequence diagrams describe in details activities for use
cases. Therefore, the sequence diagrams can be used to help in generating the
correct test cases. Based on Figure 1, a use-case diagram can be used to generate
test cases of that particular system. For example, Table 1 shows the test cases
generated from the use case Submit.

Table 1: Test cases of use case Submit.

Use Case Test Cases

Submit Complete Progress Report Form is submitted

 Incomplete Progress Report Form is submitted

 No progress report is submitted

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

196 Data Mining VIII: Data, Text and Web Mining and their Business Applications

 From Table 1, the generated test cases are the simplest test cases. From these
test cases, sequence diagrams are formed to record scenarios of the test cases.
These sequence diagrams will validate that the generated test cases confirm to its
expected results. For example, when test case of incomplete progress report form
is submitted, then the sequence diagram for that particular test case will check
the consistency of its results. Figure 2 shows the sequence diagram for use case
Submit for a scenario when an incomplete progress report is submitted.

4 GenTCase

The tool, which we call GenTCase (Generator for Test Cases), can be used to
layout the use-case diagram of any system. The tool is also able to automatically
generate the test cases of the system according to the use-case diagram that has
been formed previously. The tool is developed using object-oriented approach
with C++ programming language. The tool has 3 major components as shown in
Figure 3.

Figure 2: Sequence diagram for Submit when an incomplete form is
submitted.

Workspace

Engine

Test

Cases

Figure 3: Components of GenTCase.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 197

 From Figure 3, the tool allows a user to layout the use-case diagram of any
system in the workspace provided. The workspace is used as a place for a user to
provide the system’s requirements by means of a use-case diagram. In the
workspace, a ToolBox is used to create, edit and display the use-case diagram.
The ToolBox consists of standard symbols and arrows for a use-case diagram
such as symbols for an actor and a use case, and arrows for connecting an actor
with use cases as well as arrow for generalizations. In the workspace, a user can
also type-in the text for each of the use cases used in the Text Box provided by
the tool. The workspace will allow a user of the tool to layout the use-case
diagram according to any system.
 Once the use-case diagram has been finalized, the user can generate the test
cases by using the generator of the tool. The engine will take all the use cases
and search the keywords used in the provided database. The database consists of
most standard keywords of a use case. Once the use case used matches the
keyword inside the database, the engine will generate its respective test cases
according to its use case. Intelligent search technique is used to search all the
metadata fields in the entire database. But instead of returning the long list of
search results in which the search term happens to occur, the search engine
returns a list of the metadata fields that satisfy the query. The way the engine
works is by choosing the shortest time-to-locate the object being searched. This
will ensure the result returns in few seconds.
 The tool will produce the test cases based on the use-case diagram provided
in the workspace. These test cases are generated automatically from the tool as
the output of the tool. The output is displayed on the screen as well as stored in a
file with extension .txt, namely output.txt. A user can open this output file by
using a NotePad or Microsoft Word. The output can be used as a checklist for a
programmer to test the system that he or she will develop according to the
provided test cases. These test cases can also be used to validate the results of the
test cases so the requirements of the system are meet.
 Figure 4 shows the tool for generating the test cases. User who uses the tool
can layout the use cases using the workspace. The ToolBox is used in order to
ease the drawing of the use-case diagram. The description of each of the button
in the ToolBox is explained in Figure 5. Then, the button (as shown by number
11 for generator of test cases (GTC) in the workspace) can be used to generate
the test cases.
 Once the button of the “Generator for the Test Cases” is clicked, the test
cases according to the use cases are generated accordingly. For example, Figure
6 shows the generated test cases according to use cases Submit, View and
Evaluate.

5 Conclusion and future work

GenTCase is a tool that is able to generate the test cases automatically according
to the system’s requirements. The test cases can be used as a checklist for a
programmer to validate that the system meets its requirements. The purpose of
GenTCase is to reduce the cost of testing the system. However, GenTCase has its

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

198 Data Mining VIII: Data, Text and Web Mining and their Business Applications

limitations where the use cases used are only for functional requirements of a
system. The tool is unable to capture the non-functional requirements of a
system. Therefore, the non-functional requirements need to be captured and
tested outside of the tool.

Figure 4: Interface of GenTCase for test cases.

No. Item
1 Selection Tools
2 Text Box
3 Use Case
4 Actor
5 Note
6 Anchor Note
7 Package
8 Undirectional association
9 Dependency or instantiates

10 Generalizations
11 Generator for the Test Cases (GTC)

Figure 5: Descriptions of buttons in ToolBox.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 199

Figure 6: Test cases of use cases Submit, View and Evaluate.

 Currently, GenTCase is able to generate test cases according to a single
keyword for one use case. For example, a keyword Submit for use case will
automatically generate three test cases. The process is repeated for every use
case found in the use-case diagram. Therefore, the test cases will be generated
according to use cases in the use-case diagram. We intend to extend GenTCase
so it is able to accept more than one keyword for a single use case. For future
enhancement of GenTCase, we also plan to include the flow of events (for the
basic flow and alternate flows) of a use case so the test cases can be generated
more efficiently and accurately according to the use cases.

Acknowledgement

This research is under UTHM Fundamental Research Grant Vot 0233.

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

200 Data Mining VIII: Data, Text and Web Mining and their Business Applications

References

[1] Bahrami A. (1999). Object-Oriented Systems Development, Mc-Graw
Hill, Singapore.

[2] Gutierez J., Escalona M.J. and Torres M.M. (2006). An Approach to
Generate Test Cases from Use Cases, Proceedings of the 6th International
Conference on Web Engineering. pp. 113-114.

[3] Heumann J. (2001). Generating Test Cases from Use Cases, Rational
Software, IBM.

[4] Hui L. and Hee B.K.T (2006). Automated Verification and Test Case
Generation for Input Validation, Proceedings of the 2006 International
Workshop on Automation on Software Test (AST’06). pp. 29-35.

[5] Rational. (2003). Mastering Requirements Management with Use Cases,
Rational Software, IBM.

[6] Wee K.L., Siau C.K. and Yi S. (2004). Automated Generation of Test
Programs from Closed Specifications of Classes and Test Cases,
Proceedings of the 26th International Conference on Software Engineering
(ICSE’04). pp. 52-57.

[7] Wikipedia http://en.wikipedia.org/wiki/Main_Page
[8] Witten I. H. and Frank E. (2005). Data Mining: Practical Machine

Learning Toolsand Techniques, 2nd Edition, Morgan Kaufmann.
[9] Wood D. and Reis J. (1999). Use Case Derived Test Cases, Software

Quality Engineering for Software Testing Analysis and Review
(STAREAST99) Online. http://www.stickyminds.com/

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3517 (on-line)
WIT Transactions on Information and Communication Technologies, Vol 38,

Data Mining VIII: Data, Text and Web Mining and their Business Applications 201

