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Abstract 

Terrain data such as Light Detection and Ranging (LiDAR) compression has 
been an active research field for the last few years because of its large storage 
size. When LiDAR has a large number of data points, the surface generation 
represented by interpolation methods may be inefficient in both storage and 
computational requirements. This paper presents a newly developed compression 
scheme for the LiDAR data based on second generation wavelets. A new 
interpolation wavelet filter has been applied in two steps, namely splitting and 
elevation. In the splitting step, a triangle has been divided into several             
sub-triangles and the elevation step has been used to ‘modify’ the point values 
(point coordinates for geometry) after the splitting. Then, this data set is 
compressed at the desired locations by using second generation wavelets. The 
quality of geographical surface representation after using the proposed technique 
is compared with the original LiDAR data. The results show that this method can 
be used for significant reduction of the data set.  
Keywords:  Light Detection and Ranging (LiDAR), Delaunay triangulation, 
Triangulated Irregular Network (TIN), geographical information system, lifting 
scheme, second generation wavelets. 

1 Introduction 

Recently, most of the methods for image compression are based on wavelets and 
related techniques. Wavelet approaches for image compression tend to 
outperform Fourier approaches because of their ability to represent both spatially 
localized features and smooth regions in an image. The superior compression 
capability of wavelets combined with their natural multiresolution structure 
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makes them a good representation for storing images. While working with 
dyadic wavelet decomposition digital images are represented by wavelet 
coefficients. These types of representation in dyadic wavelet decomposition are 
known as linear decomposition over a fixed orthogonal basis. The non-linearity 
in the approximation of images by wavelets is introduced by the thresholding of 
the wavelet coefficients. This type of approximation can be viewed as mildly 
nonlinear. Recently, several highly nonlinear methods for capturing the geometry 
of images were developed, such as wedgelets [1]; as well as edge-adapted 
nonlinear multiresolution and geometric spline approximation [2]. 
     This paper presents a new approach for LIDAR data compression method 
using second generation wavelets. A random set of points has been approximated 
to represent a surface by Delaunay triangulation. The theory, computations, and 
applications of Delaunay triangulations and Voronoi diagrams have been 
described in detail in the literature [2–8]. The present work describes a fast 
algorithm based on Tsai’s Convex Hull Insertion algorithm [7, 8], for the 
construction of Delaunay triangulations of arbitrary collections of points on the 
Euclidean plane. The original algorithm has been improved further for a faster 
computation of geometric structures. The source code has been written in 
FORTRAN compiler. Once the triangulated irregular network has been created 
from the random set of points was further subjected to compression by using 
second generation wavelets. Results were shown in a comparative study basis for 
the TIN data compression at different level of resolution.  

2 Delaunay triangulation 

Many researchers [3, 9, 10], have suggested different ways to construct 
triangulations with the local equilateral property. A well known construction 
called the Delaunay Triangulation simultaneously optimizes several of the 
quality measures such as max-min angle, min-max circumcircle, and min-max 
min-containment circle. For more information on Delaunay triangulations see the 
surveys by Fortune [11]. There is a nice relationship between Delaunay 
triangulation and three dimensional convex hulls. Lift each point of the input to a 
paraboloid in three-space by mapping the point with coordinates )y,x(  to the 

point )yx,y,x( 22 + . The convex hull of the lifted points can be divided into 
lower and upper parts: a face belongs to the lower convex hull if it is supported 
by a plane that separates the point set from ),0,0( ∞− . It can be shown that the 
DT of the input points is the projection of the lower convex hull onto the xy -
plane as depicted in Figure 1. Finally a direct characterization: if a  and b  are 
input points the DT contains the edge { b,a } if and only if there is a circle 
through a  and b that intersects no other input points and contains no input 
points in its interior Moreover each circumscribing circle (circumcircle) of a DT 
triangle contains no input points in its interior. 
     The following are some properties of Delaunay triangulations have been 
discussed.  
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     Let Y  denote a finite planar point set. 
• A Delaunay triangulations )Y(D of Y  is one, such that for any triangle 

in )Y(D , the interior of its circumcircle does not contain any point from Y . 
This specific property is termed as Delaunay property.  

• The Delaunay triangulation )Y(D of Y  is unique, provided that no four 
points in Y  are co-circular. Since neither the set X  of pixels nor its subsets 
satisfy this condition, we initially perturb the pixel positions in order to 
guarantee unicity of the Delaunay triangulations of X  and of its subsets. 
Each perturbed pixel corresponds to one unique unperturbed pixel. From 
now on, we denote the set of perturbed pixels by X , and the set of 
unperturbed pixels by ˜ X . 

•  
Z

Upper convex hull 

Lower convex hull 
Delaunay triangulation 

 

Figure 1: The lifting transformation maps the DT to the lower convex hull. 

• For any )y\Y(D,Yy∈ can be computed from )Y(D by a local update. This 
follows from the Delaunay property, which implies that only the cell )y(C  
of y  in )Y(D needs to be retriangulated. Recall that the cell )y(C of y  is 
the domain consisting of all triangles in )Y(D which contain y as a vertex. 
Figure 1 shows a vertex )Y(Dy∈ and the Delaunay triangulation of its 
cell )y(C . 

 
• )Y(D provides a partitioning of the convex hull ]Y[ of Y . 

3 Interpolation wavelet filters for TIN 

An interpolation wavelet filter for TIN lies in subdivision process which has two 
steps [12]. One is a splitting step; the other one is an elevation step. In the 
splitting step, a triangle is divided into several sub-triangles. The elevation step 
is to calculate the point values (point coordinates for geometry) after the 
splitting. Let us discuss this partition step mathematically. 
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Figure 2: Irregular set of points. Figure 3: 

aunay triangulation. 

P  to express the point coordinates, one can construct an estimation of sP  based 
on eP . 

                                                        )P(EP~ es =                                                  (1) 
The estimation function (filter) E  can be a local estimation or global estimation. 
A global estimation is generally computationally expensive; therefore, a local 
estimation using only neighboring points is preferred. After the estimation step, a 
wavelet term, sW  and an approximation term, sA  for the original data can be 
constructed as: 

sss P~PW −=  
        )W(CPA see +=                                             (2) 

The correction function C  is a customizable function based on different 
optimization requirements. An inverse transform can be constructed as: 
 
                                                   )W(CAP see −=                                              (3) 

)P(EWP ess +=  
If the original point set can be partitioned into a nested group, then the above 
process can be iteratively applied to different sets in this group. A nested group 
has the flowing structure: 
                                          N210 eeee ⊂⊂⊂⊂ ""                                         (4) 

1N,,0i,ese 1iii −==∪ + …  
Ne denotes the finest representation of the geometry. Ne can be partitioned into 

1Ne − and 1Ns − ; then 1Ne −  can be partitioned into 2Ne −  and 2Ns − , and so on, 
until 1e  is partitioned into 0e  and 0s . Note that the superscripts are used to 
represent different resolutions (larger numbers represent finer resolution). Based 
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     Consider a data set to be partitioned into two groups, called s  and e . Using 

The TIN data structure using 
 Del



on this nested (or hierarchical) structure of the partition, one can construct 
wavelets and approximations of the data as: 

 
NN ee PA =  

                            )s(AB),e(AB,see 1i
es

1i
ee

1i1ii
i1ii1i

−−−− ==∪= −−               (5) 

1,,1N,Ni),B(EBW 1i1i1i eee …−=−= −−−  

)W(CBA 1i1i1i see −−− +=  
 
Here, B  is an intermediate symbol to represent the partitioning result. ieA  is 

partitioned into two components: )e(
e

1i

iA
−

and )s(
e

1i

iA
−

, which belong to 
1ie − and 1is − respectively. Based on equation (5), the original data NeP is 

decomposed into 0eA , 0sW , 1sW ,….. 1NsW − . Equation (5) is the analysis 
transform, which decomposes the finer representation into a coarser 
representation plus details. The synthesis transforms in the inverse transform and 
is shown in equation (6). The reconstructed 0eA , 1eA ,….., )P(A NN ee = yield a 
multiresolution representation of the original data. 
 

)W(CAB iii see −=  

i1ii1i

iii

s
i

ee
i

e
ii1i

ess

B)s(A,B)e(A,see

1N,,1,0i),B(EWB

==∪=

−=+=

++
+

…
                              (6) 

NN ee AP =  
 
In the above derivation of a wavelet representation [13–18], the process does not 
depend on a regular setting for the data; therefore, it can be used in both the 
regular and irregular setting cases. This is an important advantage of the lifting 
scheme [17, 18]. If the filters E  and C  are the same for every point at a given 
level, the scheme is a uniform scheme. If they also do not change with the 
resolution, i , the scheme is a stationary scheme as well. However, equations (5) 
and (6) are general formulas. Non-stationary and non-uniform schemes can be 
written in this form with indices on E  and C . Nevertheless, those schemes could 
cost more computing resources and may be less effective for data compression in 
GIS applications.  

4 Lifting scheme algorithm 

The scheme described in previous section 3 is one type of filter based on the 
lifting scheme. This is called an approximation filter, in which every point value 
will change after each iteration. The other type of filter based on the lifting 
scheme is an interpolation filter, in which a point value reaches its final position 
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once it is calculated. For GIS terrain data, however, interpolation is generally 
preferred because point values are often more useful than a general shape. 
Therefore, interpolation wavelet filters will be used in this research for 
processing three-dimensional terrain data.  
     First the approximation of the function was determined linearly. Then the 
lifting scheme was used to determine the best basis function and the coefficients. 
The lifting scheme has been employed to provide the boundary high and low 
pass filters.  
 

Figure 4: A surface showing the areas of the triangles to calculate the wavelet 
coefficients. 

     The algorithm can be described as the figure 4. The image to be encoded can 
be regarded as a discrete surface, i.e. a finite set of points in three-dimensional 
(3-D) space, by considering a non-negative discrete function of two variables 

)y,x(F and establishing the correspondence between the image and the surface 
( ){ })y,x(Fc|c,y,xA == , so that each point in A corresponds to a pixel in 

the image; the couple )y,x( gives the pixel’s position in the XY plane, while 
c is the point’s height.  
     Our goal is to approximate A by a discrete 
surface ( ){ })y,x(Gd|d,y,xB == , defined by means of a finite set of points. 
Let T be a generic triangle on the XY of vertices: 
 

),y,x(P),y,x(P),y,x(P 333222111 ===  
   and let 

),,(),,(),,( 333222111 yxFcyxFcyxFc ===       (7) 
   where 321 PandP,P are represented as 

.A)c,y,x(),c,y,x(),c,y,x( 333222111 ∈  

x

y 

P1 
P2

P3

A1A2 

A3

o
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Let O be the centroids of the triangle which means a new point after adding into 
the triangulation. Let 321 AandA,A be the area of the three triangles. Then the 
total area A can be represented as: 
 

321 AAAA ++=                                           (8) 
The detail coefficient can be represented as in equation 9. 
 

 )Z(PZd n
e

nn −=                                               (9) 

where, nd is the detail coefficient at the thn  level and )Z(P n
e  is the predicted 

value at thn  level and nZ is the values at the odd samples. 
The equation above can be rewritten in a general form for th1n −  level as  
 

)d(CZZ nn
even

1n +=−                                           (10) 

where )d(C n  
 









=

A
A

A
A

A
A

P 321                                         (11) 

TPC =  
 
Thus, by changing the correction factor C in equation 11, we can select the 
wavelet coefficients. These wavelet coefficients will determine the number of 
“significant points” that can be removed from the triangulation.  These 
significant points will be used to represent the surface.  

5 Experimental results 

All algorithms were coded in Visual Fortran and MATLAB and executed on a 
Pentium IV, 256 MB RAM machine. The optimized code is about 2000 lines of 
Visual Fortran and 500 lines of MATLAB. To evaluate the performance of the 
wavelet based triangulation compression method several test data were used. The 
wavelet based triangulation compression method gives consistently better 
performance for the LIDAR data that we used.  
     Three different sets of LIDAR data have been used to check the efficiency of 
the compression program. TIN was compressed using the second generation 
wavelets. Based on the initial configuration of the original TIN, different 
resolutions are constructed during wavelet analysis. Figures 5a, 5b and 6a, 6b 
show the results computed using the wavelet based lifting scheme algorithm. 
Figure 5a shows the original data. Figure 6a shows the results after 12% 
compression and figure 7a shows after 23% compression. Figure 7b shows the 
triangulation of the image after compression. Different compression schemes, 
such as Huffman coding can be applied to these wavelet coefficients to further 
reduce the storage size. This work also provides current implementation of 
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wavelet coefficients during the compression operation. The proposed algorithm 
has the multiresolution capability and easy to compress due to large number of 
wavelet coefficients with small magnitudes which is suitable for distributed GIS 
applications such as web displaying.  
 
 

            
                               (a)                                                              (b) 

Figure 5: (a) Initial Terrain (Gouraud shaded); (b) Triangulation for the 
initial terrain (5,000 points).  

 

           
        (a)                                                              (b) 

Figure 6: (a) Terrain compression at 12 % (Gouraud shaded); (b) 
Triangulation for the terrain at 12% (1,023 points). 

 

            
                                (a)                                                             (b) 

Figure 7: (a) Terrain compressed at 23% (Gouraud shaded); (b) Triangulation 
of the terrain at 23% (870 points). 
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6 Conclusion 

The construction of Triangulated Irregular Network using Delaunay triangulation 
for the LIDAR data has been shown. This approach uses fast and efficient 
second generation wavelets algorithm for multiresolution analysis of GIS data 
compression. This algorithm is easy to perform the mathematical and 
computational operation with minimal time, irrespective of the large data. Our 
algorithm scheme preserves high-gradient regions that might exist in a given data 
set. We have tested our method with various data sets. The computational cost of 
our algorithm depends on the different approaches used. The initial triangulation 
can be done in )nlogn(O , the gradient approximation can be done in 

)nlogn(O . The individual refinement step has to check all the original data 
points lying in the involved triangles, so the complexity of each step is )n(O . 
How often the iteration step is executed depends on the error value given in the 
input. As a general rule, the authors have assumed that no more iteration should 
be done than they are original data sites. So the overall complexity is )n(O 2 . 
We are currently investigating the detailed error analysis for the different sets of 
data sets at different scales.  
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