
SEQUEST: mining frequent subsequences
using DMA-Strips

H. Tan1, T. S. Dillon1, F. Hadzic1 & E. Chang2
1Faculty of IT, University of Technology Sydney, Sydney, Australia
2School of IT, Curtin University, Perth, Australia

Abstract

Sequential patterns exist in data such as DNA string databases, occurrences of
recurrent illness, etc. In this study, we present an algorithm, SEQUEST, to mine
frequent subsequences from sequential patterns. The challenges of mining a very
large database of sequences is computationally expensive and require large
memory space. SEQUEST uses a Direct Memory Access Strips (DMA-Strips)
structure to efficiently generate candidate subsequences. DMA-Strips structure
provides direct access to each item to be manipulated and thus is optimized for
speed and space performance. In addition, the proposed technique uses a hybrid
principle of frequency counting by the vertical join approach and candidate
generation by structure guided method. The structure guided method is adapted
from the TMG approach used for enumerating subtrees in our previous work [8].
Experiments utilizing very large databases of sequences which compare our
technique with the existing technique, PLWAP [4], demonstrate the effectiveness
of our proposed technique.
Keywords: mining frequent subsequences, sequence, phylogenic tree, sequential
strips.

1 Introduction

Data mining strives to find frequent patterns in data [1–4, 12]. A task in data
mining is characterized by the type of data, structures and patterns to be found
[8, 9]. Advancements in data collection technologies have contributed to the high
volumes of sales data. Sales data typically consists of a transaction timestamp
and the list of items bought by customers. If one is interested in inter-
transactional patterns, sales data is a good example of a sequential pattern. Other

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VII: Data, Text and Web Mining and their Business Applications 315

doi:10.2495/DATA060321

examples of sequential patterns include DNA sequences in DNA databases and
events that are ordered in time in real time databases.
 There are two different sub problems in mining frequent subsequences, i.e.
problems of addressing (1) sequences of items and (2) sequences of itemsets.
Addressing sequences of itemsets, i.e. sequences whose elements consist of multi
items, is a more difficult problem and poses more challenges. In this paper, we
will limit our scope of study to the first problem by comparing our technique,
SEQUEST, with the PLWAP algorithm [4]. Nonetheless, SEQUEST using
DMA-Strips is designed to tackle both sub problems of mining frequent
subsequences.
 Our contributions are as follows. We develop a DMA-Strips that provides a
direct memory access to sequences in the database. One way to achieve efficient
processing is to develop an intermediate memory construct that helps us to easily
process and manipulate something. We showed this in [9] by developing an
efficient intermediate memory construct called Embedding List (EL) [9, 10] to
efficiently mine frequent embedded subtrees. The problem of using such
intermediate memory constructs is that it demands some additional memory
storage. For mining a very large database of sequences this is more a trade off
than an advantage. DMA-Strips does not store hyperlinks of items, instead it
segmented the database of sequences systematically so that it allows a direct
access processing and manipulation. This contributes to a better speed and space
performance than using an intermediate memory construct like EL that reserves
extra storage in memory to store a corpus of hyperlinks of items. The idea of
using hyperlinks is described in [9, 10]. Nevertheless, DMA-Strips resembles EL
in that it allows efficient enumeration using a model or structure guided
approach. Previously we developed the Tree Model Guided (TMG) [9, 10]
candidate generation technique that utilizes the tree model to generate candidate
subtrees. A unique property of the structure or model guided approach is that it
ensures all enumerated patterns are valid patterns. These patterns are valid in the
sense that they exist in the database, and hence by ensuring only valid patterns,
no extra work is required to prune invalid patterns. The strategy to tackle mining
sequence of items and itemsets using DMA-Strips is outlined in detail in chapter
2. Additionally for efficient frequency counting we use a hybrid method. For
counting frequent 1-subsequences we transpose the database from horizontal
format to vertical format [12]. We combine an efficient horizontal counting using
a hashtable [3, 8 ,9] for counting 2-subsequences and the space efficient vertical
join counting approach [3, 12] for counting k-subsequences where k≥3. This
hybrid approach overcomes a non-linear performance for counting
2-subsequences due to the O(n2) complexity of the join enumeration approach
[3, 8]. The rest of the paper is organized as follows. Section 2 gives the problem
decomposition. Section 3 discusses related works. We examine the proposed
technique and present the algorithms in section 4. In section 5, we empirically
evaluate the performance and scale-up properties of the proposed technique. We
summarize the research in section 6.

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

316 Data Mining VII: Data, Text and Web Mining and their Business Applications

2 Problem statements

A sequence S consists of ordered elements {e1,…, en}. Sometimes elements of a
sequence are referred to as events [12]. Each element in a sequence can be either
an atomic or a complex type. For a sequence with atomic elements there is one
entity or item per element. If the element is of a complex type, each element can
have multiple items (itemsets). The itemsets can be ordered or unordered. In this
paper we will show how our approach is designed to mine both sequences of
ordered itemsets and sequences of ordered items. We refer to sequences of
ordered itemsets or items simply as sequences of itemsets of items.
 A sequence δ is denoted as e1→e2→…→en and |ei| refers to the size of
itemsets. We refer to the first item of the sequence as its root. In case of
sequences of itemsets, the root is the first item of the first itemset in the
sequence. Zaki [12] described e1→e2→…→en to refer to the same notation. A
sequence can be identified uniquely through its encoding which is a string of
element labels separated by an arrow →. In the case of a sequence of items we
assume each event ei as an atomic item. Encoding of a sequence α is denoted by
φ(α). An element with j items is denoted by e:{λ1,…, λj} where λi is a label of
item i. A label of an element with j items, denoted by λ(e), is a concatenation of
λ1+…+ λj. Say a sequence α:{e1,e2} where e1:{A,B} and e2:{C,D}, the label of
e1, λ(e1), is ‘AB’ and the label of element e2, λ(e2), is ‘CD’ and the encoding of
sequence α, φ(α), is ‘AB→CD’. This labelling function translates equivalently
for an element that consists of an atomic item. We normally refer to a sequence
by its encoding without quotes. Consider a sequence with n elements. We refer
to a sequence with k items as k-sequence, i.e. k equals to the sums of |ei| for
i=1,…,n. For example, AB→CD is a 4-sequence and AB→DF→G is a
5-sequence. A subsequence is a subset of a sequence such that the order of
elements in the subsequence is the same as the order of the elements in the
sequence. Accordingly, a subsequence with k elements is called a
k-subsequence. We say that a subsequence S is a subset of sequence T if the
elements of subsequence S are a subset of elements of sequence T and the
ordering of items is preserved (S ≤ T). A→C is an example of subsequence of
AB→CD whereas AC is not. A is a subset of AB and C is a subset of CD
whereas AC is not a subset of either AB or CD. We denote that element α is a
subset of element β as α ⊆ β. Further the ordering of elements in a sequence
follows a certain ordering function. The most common ordering function is a
time function. If an element α occurs at t1 and element β occurs at t2 where
t1 < t2, the position of α and β in a sequence is i and j respectively and i < j. A
gap constraint [7] is very similar to the notion of level of embedding [9] between
two nodes in a tree with an ancestor-descendant relationship. The gap between
two elements in a sequence is determined by the gap distance (∆) between two
elements at position i and j, i.e. ∆ is a delta between i and j. A subsequence τ is
said to be contiguous if there is no gap between every two consecutive elements.
In other words, for a contiguous subsequence every two consecutive elements
have a gap distance 1. Subsequences that contain any two consecutive elements
with ∆ > 1 are called non-contiguous subsequence. Suppose we have a sequence

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VII: Data, Text and Web Mining and their Business Applications 317

δ:A→BCD→F→GH→IJ→JK. A→B→F and A→F→K are both subsequences
of δ. A→B→F is a contiguous subsequence of δ since the gap distance of every
two consecutive elements is 1, whereas A→F→K is a non-contiguous
subsequence of δ. Because the gap distance between A and F in A→F→K is 2
and between F and K is 3. The database D for sequence mining consists of input-
sequences. Each input-sequence can contain one to many itemsets. Each input-
sequence is identified through a unique sequence-id (sid) whereas each element
(itemsets) is identified through a unique event-id (eid). If D contains sales data,
the sid can be a customer-id. A common event identifier in transactional
databases is a timestamp. We say that a sequence α has a support count γ if there
are γ numbers of input-sequences that support it. An input-sequence supports
sequence α if it contains at least 1 occurrence of α. Mining frequent
subsequences from a database of input-sequences can be formulated as
discovering all frequent subsequences whose support count γ is greater or equal
to the user specified minimum support threshold σ.

3 Related works

Early in their work, Agrawal [1] introduced the problem of mining sequential
patterns over transactions data. In [1] they proposed 2 algorithms for mining
sequential data, AprioriAll and AprioriSome. While the problem of market
basket analysis is concerned with finding frequent intra-transaction patterns,
mining sequential patterns on the other hand is concerned with finding frequent
inter-transaction patterns [5]. Further, the data used in mining sequential patterns
has an ordered notion. A sequential pattern consists of ordered events or
elements. We are in particular interested in finding non-contiguous subsequences
[7]. Mining non-contiguous subsequences can be very expensive when data has
long patterns. A concept of a constraint can be introduced. In [7] they proposed
an improved algorithm GSP that generalizes the scope of sequential pattern
mining to include time constraints, sliding time windows, and user-defined
taxonomy. Mannila and Toivonen [6] proposed an approach that addresses the
problem of sequential mining where each element of the sequences consists of
atomic item. Similarly [11] formulated the problem of mining frequent
subsequences from genetic sequences where each element of the sequences
consists of an atomic item. Recently, Ezeife and Lu [4] developed an efficient
technique PLWAP based on the concept of WAPTree that mines frequent
subsequences of items. PLWAP is reported to have desirable scalability
properties. Additionally it was reported that it outperforms WAPTree and GSP.
Others [7, 12] formulated the problem of mining frequent subsequences from
database of transaction sequences such that each element can comprise of
multiple items. Both [7, 12] assume unordered itemsets. Zaki [12] developed an
efficient algorithm, SPADE, for mining frequent subsequences. SPADE uses a
vertical id-list database format and a lattice-theoretic approach to decompose the
original search space into smaller pieces.

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

318 Data Mining VII: Data, Text and Web Mining and their Business Applications

4 SEQUEST algorithm

4.1 Database scanning

SEQUEST scans the database Sdb twice and generates a frequent database that
contains only frequent 1-subsequences, Sdb’ after the first scan (figure 3 [1]). Sdb’
is obtained by intersecting Sdb with L1 (figure 3 [2]), the set of frequent 1-
subsequences. The first scan and the second scan are executed in two separate
runs. Sdb’ is used to construct DMA-Strips.

4.2 Constructing DMA-Strips

A DMA-Strip is constructed as follows (figure 3 [3]). For each item in Sdb’, an
ordered list (strip) is generated which stores a sequence of items’ label, scope
and eid. Each strip is uniquely identified by a sequence-id sid. To allow mining
sequences of itemsets each item in a strip stores event-id eid and a notion of
scope. The eid groups items in a strip based on their timestamps. The scope is
used to determine the relationship between two consecutive items in a strip. The
scope of an item A is determined by the position of the last item that belongs to
the same event. If the preceding item’s position is out of the prior item’s scope
this tells us for sequence of itemsets that the two items (say A and B) occur at
different times, i.e. A→B. Otherwise A and B occurs at the same time the event
is generated, i.e. AB. Through the use of the scope DMA-Strips can be used for
both mining sequences of itemsets or items.

Figure 1: Pseudo-code of SEQUEST.

 Figure 1 shows an example of a strip of a sequence A→CEF→HJL whose sid
is 0. The above sequence consists of 3 different events. AC, EF, and HJL belong
to event 0, 1 and 2 respectively. The scope of A is equal to the position of the
last item whose eid is the same as A, which is C. Hence, A’s scope is determined
to be 1. Similarly, using the same rule, H’s scope is determined to be 6. Each
strip can be fetched in O(1) by specifying its offset or its sid.

4.3 Enumeration of subsequences

The enumeration of subsequences is done by iterating a strip and extending one
item at the time to the expanding k-subsequence. We call this a model-guided or

0 A C A H H J L

label: A
scope: 1
eid: 0

label: H
scope: 6
eid: 2

sid [0]:: A→CEF→HJL

 [0] [1] [2] [3] [4] [5] [6]

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VII: Data, Text and Web Mining and their Business Applications 319

structured-guided enumeration as the enumeration is guided by the actual model
or structure of the data. Figure 2 illustrates how the enumeration of AC, A→E,
and A→H is done through the strip. Given that we have 1-subsequence I at
position r and the strip S with size |S|, 2-subsequences are generated by
extending I with each item J at position t on its right to the end of the strip such
that r < t ≤ |S| (figure 3 [4]). This can be generalized to enumerating (k+1)-
subsequences from a k-subsequence (figure 3 [5]). For a k-subsequence it is
sufficient to store only a pair of sid and the last item’s position (tail) as its
occurrence coordinate. Hence, given an occurrence coordinate of a (k-1)-
subsequence its occurrence coordinate will be in a form of (sid,tail). Hence the
enumeration of (k+1)-subsequences M using a strip S from a k-subsequence s
whose encoding is φ(s), and occurrence coordinate is (p,q), where p is its sid and
q is the tail can be formalized as follows. Suppose that C is the set of occurrence
coordinates of (k+1)-subsequences, C={(p,t)|q< t ≤ |S|}. The encoding of the
(k+1)-subsequences is computed by performing a scope test. We define two
functions, Ψ(p,q) and λ(p,q) that determine the scope and label of an item in a
strip with sid p and at position q. If t > Ψ(p,q) then the new encoding ς = φ(s) +
‘→’ + λ(p,t) otherwise ς = φ + λ(p,t) (figure 3 [6]and[7]). For example, from
figure 2, a strip with sid 0, extending A0 (A at position 0) with A2 (A at position
2) generates A→A since 2 > Ψ(0,0) for the given strip. We know that Ψ(0,0)
from figure 1 is 1. Although a constraint represents an important concept, we
don’t particularly focus on it in this paper. However the current scheme can be
extended easily to incorporate the gap constraint described in the previous
section for example by restricting the extension using the event-id delta.

4.4 Frequency counting

We utilize a hybrid strategy enumerating subsequences by extension and
counting by the vertical join approach to make use of the desired property from
each technique. Enumeration by extension makes sure that the candidates
generated are all valid. What we mean by a valid candidate is a candidate whose
support is greater than zero. The vertical counting approach is used to help us
achieve a space efficient and less expensive full pruning strategy.

A C A H H J L

Figure 2: Enumeration examples.

 We define two operators inter-join and intra-join (figure 3 [10, 11]) to tackle
both sub problems of mining sequence of itemsets and items. The inter-join
operator is used whenever the tail items of two joinable (k-1)-subsequences are
from different events, whereas intra-join operator is used if they are from the
same event. Intra-join will join any two occurrence coordinates whose sid and
eid are equal. Inter-join will join any two occurrence coordinates whose sid are
equal but the prior eid is less than the preceding eid. If the gap constraint is to be

A→H
A→A

AC
 (4,0)(0,1)

(0,2)

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

320 Data Mining VII: Data, Text and Web Mining and their Business Applications

introduced, it will be to define the inter-join operator by constraining the gap
between the two eid. Space efficiency is achieved through the vertical join
approach by freeing the memory sooner than the horizontal counting approach
does. The details of how the less expensive full pruning is achieved through the
vertical join approach is discussed below.

 Sdb:Sequence Database
 Lk:Frequent k-subsequences

 L1= Scan-Sdb [1]
 Sdb’= Intersect(Sdb∩L1) [2]
 DMA-STRIPS = Construct-DMA-STRIPS(Sdb’) [3]
 L2 = Generate-2-Subsequences(DMA-STRIPS) [4]
 k=3
 while(Lk > 0)
 Lk= Generate-k-Subsequences(Lk-1) [5]
 k++

 Generate-k-Subsequences(Lk-1):
 for each (k-1)-sequence s in Lk-1{
 for each occurrence-coordinate oc(sid,r) in s{
 for t=r+1 to |DMA-STRIPS[sid]|{
 if(t > scope(sid,r))
 join = inter-join
 φ(s’) = φ(s) + → + label(sid,t) [6]
 else
 join = intra-join
 φ(s’) = φ(s) + label(sid,t) [7]

 root-pruned = remove-root(φ(s’)) [8]
 tail-pruned = φ(s’) [9]
 if(join == intra-join)
 Intra-Join(root-pruned, tail-pruned) [10]
 else
 Inter-Join(root-pruned, tail-pruned) [11]
 if(InFrequent(φ(s’)))
 Prune(φ(s’))
 else
 Insert(φ(s’),Lk)

Figure 3: Pseudo-code of SEQUEST.

4.5 Pruning

According to Apriori theory a pattern is frequent if and only if all its subsets are
frequent. To make sure that all generated subsequences do not contain infrequent
subsequences, full (k-1) pruning must be performed. Full (k-1) pruning or full
pruning implies that at most (k-1) numbers of (k-1)-subsequences need to be
generated from the currently expanding k-subsequences. This process is
expensive. Using the join approach principle, any two (k-1)-subsequence that are
obtained from a k-subsequence by removing one node at a time can be joined to
form the k-subsequence back. This implies that we could accelerate the full
pruning by only doing root and tail pruning (figure 3 [8, 9]). Root pruning is

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VII: Data, Text and Web Mining and their Business Applications 321

done by removing the root node, i.e. the first node of the sequence and checking
if the pattern has been generated previously. Similarly, tail pruning is done by
removing the tail node. Since we use a hashtable to perform frequency counting
this can be done by simply checking if the pattern exists in the k-1 hashtable. If it
does not exist we can safely prune the generated k-subsequences. However, it is
not completely safe to assume that if both root-pruned and tail-pruned (k-1)-
subsequences exist means the generated k-subsequences must be frequent. At
least, the root and tail pruning will do the partial check and the final check is
done by joining the occurrence coordinates of the root-pruned and tail-pruned
(k-1)-subsequences which is done as part of the support counting. This scheme
can only be done using vertical support counting since vertical support counting
counts the support of a subsequence vertically, i.e. the result is known
immediately. Horizontal counting, on the other hand, increments the support of a
subsequence by one at a time and the final support of a subsequence is not
known until the database is traversed completely.

5 Experimental results and discussions

This section explores the effectiveness of the proposed SEQUEST algorithm, by
comparing it with the PLWAP [4] algorithm that processes sequences of items.
The formatting of the datasets used by PLWAP can be found in [4]. SEQUEST,
on the other hand, uses the datasets format that is used by the IBM data generator
[1, 7]. The minimum support σ is denoted as (Sxx), where xx is shown as the
absolute support count. Experiments were run on Dell Rack Optimized Slim
Servers (dual 2.8 Ghz CPU, 4Gb RAM) running Fedora 4.0 ES Linux. The
source code for each algorithm was compiled using GNU g++ version 3.4.3 with
–g and –O3 parameters. The datasets chosen for this experiment were previously
used in [4], in particular data.ncust_25 (figure 4), data.100K, data.600K,
data.ncust_125 (figure 5 and 6(a)), and data.ncust_1000 (figure 6(b)). To obtain
the 500K dataset for experiments in figure 5 we cut the last 100K sequences
from the data.600K dataset.
 Figure 4(a) shows the comparison of the algorithms with respect to time, for
varying support thresholds. In this experiment we try two schemes for
SEQUEST, namely SH (refers to SEQUEST-hybrid) and S (refers to
SEQUEST). SH uses a vertical join counting approach only for generating
frequent k-sequences where k>3, whereas S uses a horizontal counting approach
using a hashtable for all k. The results in figure 4(a) show that SH performs
better than S and PLWAP. The performance of SH remains nearly constant for a
very small support (σ:2 or 0.001%). The difference between SH and PLWAP
performance at σ:2 is in the order of ~800 times. It should be noted as well that
the memory usage of SH is much better than S due to the vertical counting
approach used in SH.

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

322 Data Mining VII: Data, Text and Web Mining and their Business Applications

1

10

100

1000

10000

S2 S100 S135 S150 S165 S180 S195

Minimum Supports (absolute)

Ti
m

e
(s

ec
on

ds
)

PLWAP SH S

aborted

1

10

100

1000

10000

S2 S100 S135 S150 S165 S180 S195

Minimum Supports (absolute)

M
em

or
y

us
ag

e
(m

eg
ab

yt
es

)

PLWAP-M SH-M S-M

aborted

 (a) (b)

Figure 4: 200K dataset (a) time performance (b) memory profiles.

 Figure 4(b) shows comparison of memory usage between PLWAP, SH and S.
We can see that when the horizontal counting approach is used S suffers from
memory blow-up and this contributes to S aborting at σ≤135. SH memory
profiles on the other hand, show a superior overall performance over the other
two, especially when the minimum support is lowered.
 We perform a scalability test by varying the datasets of different sizes while σ
is fixed at 0.005%. In figure 5(a), SH outperformed PLWAP with respect to time
in the order of ~250 times faster. In this experiment we try two different methods
for generating frequent 2-subsequences. SH uses the structure-guided
enumeration approach as described in the previous section, and S-L2J uses a join
approach. Figure 6(a) shows that SH has a more linear performance than S-L2J.
We observe that if the enumeration for 2-subsequences uses the join approach
the time performance is up by roughly n2 if the datasets size is scaled up by n
times. On the other hand, it is interesting to see that whenever the join approach
is used the memory usage is slashed by almost half.

1

10

100

1000

10000

100000

1000K 500K 100K

Database Size (thousands)

Ti
m

e
(s

ec
on

ds
)

PLWAP SH S-L2J

0

200

400

600

800

1000

1200

1400

1600

1000K 500K 100K

Database Size (thousands)

M
em

or
y

us
ag

e
(m

eg
ab

yt
es

)

PLWAP SH S-L2J
 (a) (b)

Figure 5: 1000K dataset (a) time performance (b) memory profiles.

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VII: Data, Text and Web Mining and their Business Applications 323

3253040

1660320

9949 9987 10034

343416

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1000K 500K 100K
Database Size (thousands)

N
um

be
r o

f s
ub

se
qu

en
ce

s

Freq Subsequences Subsequences

0
200
400
600
800

1000
1200
1400
1600
1800
2000

S10000 S5000 S2500
Minimum Support (absolute)

Ti
m

e
(s

ec
od

s)

PLWAP SH

aborted

 (a) (b)

Figure 6: (a) 1000K dataset Frequency distribution (b) 7000K time
performance.

 Figure 6(b) shows that SH memory usage is 2x greater than S-L2J. Overall,
we witness that all SEQUEST variants, SH and S-L2J have outperformed
PLWAP in terms of speed and space performance. Figure 6(a) shows the
distribution of candidate subsequences and frequent subsequences generated over
different dataset sizes with σ fixed at 0.005%. Figure 6(b) shows the time
performance comparison between PLWAP and SH for a dataset of 7.8 million
sequences. For this particular dataset, we see that PLWAP outperforms SH by a
small margin. However at σ:2500 (0.03%), PLWAP aborted due to a memory
blow up problem. At σ:10000 and σ:5000 the number of extracted frequent
subsequences is relatively low, 130 and 1211 respectively.
 PLWAP performs well whenever the average length of the extracted
subsequences is relatively short. In other words, PLWAP performs well for large
sparse databases but when applied to dense databases with long patterns, the
performance is significantly reduced. In figure 4 and 5 experiments we have
shown that PLWAP performance degrades whenever the support is set at a lower
value and the number of frequent patterns extracted is very high. On the other
hand, we observe that SH performs well for extracting frequent 1 and 2
subsequences. However the performance started to degrade when generating
3-subsequences. For this very large dataset we see that the bottleneck of SH has
shifted from k=2 to k=3. We observe that the number of candidates generated for
k=3 is extremely large, i.e. 10,137,400. From previous experiment in figure 5(a)
we saw a similar property, where counting using the vertical join approach when
the number of candidates are very large at k=2, S-L2J, although space efficient,
suffered a non-linear performance. From this we can infer that optimal
performance can be obtained whenever it is known when to switch from the
horizontal to vertical join counting approach. The horizontal counting approach
suffers from memory blow-up but is faster whenever the numbers of candidates
generated are very large. The vertical counting join approach is space efficient
however the performance degrades when the number of candidates to be
generated is very large.

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

324 Data Mining VII: Data, Text and Web Mining and their Business Applications

6 Concluding remarks

Overall remarks about the algorithms are as follows. PLWAP is a space efficient
technique but it suffers when the support is lowered and the numbers of frequent
subsequences extracted are high. SEQUEST, on the other hand, when the
horizontal counting approach is used suffers from a memory blow-up problem
due to the BFS approach for generating candidate subsequences. It uses two
hash-tables and additional space needs to be occupied when the length of the
sequences to be enumerated increases. We also show that if SEQUEST uses a
vertical join counting approach it performs extremely well for both speed and
space performance. If the vertical join counting approach is used, the space can
be freed much sooner than if the horizontal counting approach is used. The
hybrid method of structure-guided enumeration using DMA-Strips and the
vertical join counting approach enables SEQUEST to tackle a very large
database and shows a linear scalability performance. However it should be noted
that whenever the frequency of extracted subsequences are high the vertical join
approach performance could degrade due to the nature of the join approach
complexity. Additionally, through using the notion of scope in DMA-Strips,
SEQUEST can process sequences of itemsets as well as sequences of items.

References

[1] Agrawal, R., Srikant, R.: Mining Sequential Patterns. In Proc. IEEE 11th
ICDE (1995) Vol. 6, No. 10, 3–14

[2] Bayardo, R. J., Efficiently Mining Long Patterns from Databases.
SIGMOD'98, Seattle, WA, USA (1998)

[3] Chi, Y., Nijssen, S., Muntz, R.R., Kok. J.N.: Frequent Subtree Mining An
Overview. Fundamenta Informaticae, Special Issue on Graph & Tree
Mining (2005)

[4] Ezeife, C.I., Lu. Y.: Mining Web Log sequential Patterns with Position
Coded Pre-Order Linked WAP-tree. The International Journal of Data
Mining and Knowledge Discovery (DMKD) (2005) Vol. 10, 5-38

[5] Feng, L., Dillon, T.S., and Liu, J.: Inter-transactional association rules for
multi-dimensional contexts for prediction and their application to studying
meteorological data. Data Knowl. Eng. (2001) Vol. 37, No. 1, 85-115.

[6] Manilla, H., Toivonen, H.: Discovering generalized episodes using
minimal occurrences. In 2nd Intl. Conf. Knowledge Discovery and Data
Mining (1996)

[7] Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and
Performance Improvements. Technical Reports, IBM Research Division,
Almaden Research Centre, San Jose, CA (1996)

[8] Tan, H., Dillon, T.S., Feng, L., Chang, E., Hadzic, F.: X3-Miner: Mining
Patterns from XML Database. In Proc. of Data Mining '05. Skiathos,
Greece (2005)

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

Data Mining VII: Data, Text and Web Mining and their Business Applications 325

[9] Tan, H., Dillon, T.S., Hadzic, F., Feng, L., Chang, E.: IMB3-Miner:
Mining Induced/Embedded Subtrees by Constraining the Level of
Embedding. In Proc. of PAKDD’06 (2006) Singapore

[10] Tan, H., Dillon, T.S., Hadzic, F., Feng, L., Chang, E.: Tree Model Guided
Candidate Generation for Mining Frequent Patterns from XML
Documents. ACS TOIS Journal (2005) (Submitted)

[11] Wang, J.T-L, Chirn, G.-W, Marr, T.G., Shapiro, B., Shasha, D., Zhang, K.
Combinatorial pattern discovery for scientific data: Some preliminary
results. In Proc. of the ACM SIGMOD Conference on Management of
Data, Minneapolis, May 1994.

[12] Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent
Sequences. Machine Learning (2000) Vol. 0, 1-31

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line)

326 Data Mining VII: Data, Text and Web Mining and their Business Applications

