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Abstract 

Sequential patterns exist in data such as DNA string databases, occurrences of 
recurrent illness, etc. In this study, we present an algorithm, SEQUEST, to mine 
frequent subsequences from sequential patterns. The challenges of mining a very 
large database of sequences is computationally expensive and require large 
memory space. SEQUEST uses a Direct Memory Access Strips (DMA-Strips) 
structure to efficiently generate candidate subsequences. DMA-Strips structure 
provides direct access to each item to be manipulated and thus is optimized for 
speed and space performance. In addition, the proposed technique uses a hybrid 
principle of frequency counting by the vertical join approach and candidate 
generation by structure guided method. The structure guided method is adapted 
from the TMG approach used for enumerating subtrees in our previous work [8]. 
Experiments utilizing very large databases of sequences which compare our 
technique with the existing technique, PLWAP [4], demonstrate the effectiveness 
of our proposed technique.  
Keywords:  mining frequent subsequences, sequence, phylogenic tree, sequential 
strips. 

1 Introduction 

Data mining strives to find frequent patterns in data [1–4, 12]. A task in data 
mining is characterized by the type of data, structures and patterns to be found 
[8, 9]. Advancements in data collection technologies have contributed to the high 
volumes of sales data. Sales data typically consists of a transaction timestamp 
and the list of items bought by customers. If one is interested in inter-
transactional patterns, sales data is a good example of a sequential pattern. Other 
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examples of sequential patterns include DNA sequences in DNA databases and 
events that are ordered in time in real time databases. 
     There are two different sub problems in mining frequent subsequences, i.e. 
problems of addressing (1) sequences of items and (2) sequences of itemsets. 
Addressing sequences of itemsets, i.e. sequences whose elements consist of multi 
items, is a more difficult problem and poses more challenges. In this paper, we 
will limit our scope of study to the first problem by comparing our technique, 
SEQUEST, with the PLWAP algorithm [4]. Nonetheless, SEQUEST using 
DMA-Strips is designed to tackle both sub problems of mining frequent 
subsequences.  
     Our contributions are as follows. We develop a DMA-Strips that provides a 
direct memory access to sequences in the database. One way to achieve efficient 
processing is to develop an intermediate memory construct that helps us to easily 
process and manipulate something. We showed this in [9] by developing an 
efficient intermediate memory construct called Embedding List (EL) [9, 10] to 
efficiently mine frequent embedded subtrees. The problem of using such 
intermediate memory constructs is that it demands some additional memory 
storage. For mining a very large database of sequences this is more a trade off 
than an advantage. DMA-Strips does not store hyperlinks of items, instead it 
segmented the database of sequences systematically so that it allows a direct 
access processing and manipulation. This contributes to a better speed and space 
performance than using an intermediate memory construct like EL that reserves 
extra storage in memory to store a corpus of hyperlinks of items. The idea of 
using hyperlinks is described in [9, 10]. Nevertheless, DMA-Strips resembles EL 
in that it allows efficient enumeration using a model or structure guided 
approach. Previously we developed the Tree Model Guided (TMG) [9, 10] 
candidate generation technique that utilizes the tree model to generate candidate 
subtrees. A unique property of the structure or model guided approach is that it 
ensures all enumerated patterns are valid patterns. These patterns are valid in the 
sense that they exist in the database, and hence by ensuring only valid patterns, 
no extra work is required to prune invalid patterns. The strategy to tackle mining 
sequence of items and itemsets using DMA-Strips is outlined in detail in chapter 
2. Additionally for efficient frequency counting we use a hybrid method. For 
counting frequent 1-subsequences we transpose the database from horizontal 
format to vertical format [12]. We combine an efficient horizontal counting using 
a hashtable [3, 8 ,9] for counting 2-subsequences and the space efficient vertical 
join counting approach [3, 12] for counting k-subsequences where k≥3. This 
hybrid approach overcomes a non-linear performance for counting 
2-subsequences due to the O(n2) complexity of the join enumeration approach 
[3, 8]. The rest of the paper is organized as follows. Section 2 gives the problem 
decomposition. Section 3 discusses related works. We examine the proposed 
technique and present the algorithms in section 4. In section 5, we empirically 
evaluate the performance and scale-up properties of the proposed technique. We 
summarize the research in section 6. 
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2 Problem statements 

A sequence S consists of ordered elements {e1,…, en}. Sometimes elements of a 
sequence are referred to as events [12]. Each element in a sequence can be either 
an atomic or a complex type. For a sequence with atomic elements there is one 
entity or item per element. If the element is of a complex type, each element can 
have multiple items (itemsets). The itemsets can be ordered or unordered. In this 
paper we will show how our approach is designed to mine both sequences of 
ordered itemsets and sequences of ordered items. We refer to sequences of 
ordered itemsets or items simply as sequences of itemsets of items. 
     A sequence δ is denoted as e1→e2→…→en and |ei| refers to the size of 
itemsets. We refer to the first item of the sequence as its root. In case of 
sequences of itemsets, the root is the first item of the first itemset in the 
sequence. Zaki [12] described e1→e2→…→en to refer to the same notation. A 
sequence can be identified uniquely through its encoding which is a string of 
element labels separated by an arrow →. In the case of a sequence of items we 
assume each event ei as an atomic item. Encoding of a sequence α is denoted by 
φ(α). An element with j items is denoted by e:{λ1,…, λj} where λi is a label of 
item i. A label of an element with j items, denoted by λ(e), is a concatenation of 
λ1+…+ λj. Say a sequence α:{e1,e2} where e1:{A,B} and e2:{C,D}, the label of 
e1, λ(e1), is ‘AB’ and the label of element e2, λ(e2), is ‘CD’ and the encoding of 
sequence α, φ(α), is ‘AB→CD’. This labelling function translates equivalently 
for an element that consists of an atomic item. We normally refer to a sequence 
by its encoding without quotes. Consider a sequence with n elements. We refer 
to a sequence with k items as k-sequence, i.e. k equals to the sums of |ei| for 
i=1,…,n. For example, AB→CD is a 4-sequence and AB→DF→G is a 
5-sequence. A subsequence is a subset of a sequence such that the order of 
elements in the subsequence is the same as the order of the elements in the 
sequence. Accordingly, a subsequence with k elements is called a 
k-subsequence. We say that a subsequence S is a subset of sequence T if the 
elements of subsequence S are a subset of elements of sequence T and the 
ordering of items is preserved (S ≤ T). A→C is an example of subsequence of 
AB→CD whereas AC is not. A is a subset of AB and C is a subset of CD 
whereas AC is not a subset of either AB or CD. We denote that element α is a 
subset of element β as α ⊆ β. Further the ordering of elements in a sequence 
follows a certain ordering function. The most common ordering function is a 
time function. If an element α occurs at t1 and element β occurs at t2 where 
t1 < t2, the position of α and β in a sequence is i and j respectively and i < j. A 
gap constraint [7] is very similar to the notion of level of embedding [9] between 
two nodes in a tree with an ancestor-descendant relationship. The gap between 
two elements in a sequence is determined by the gap distance (∆) between two 
elements at position i and j, i.e. ∆ is a delta between i and j. A subsequence τ is 
said to be contiguous if there is no gap between every two consecutive elements. 
In other words, for a contiguous subsequence every two consecutive elements 
have a gap distance 1. Subsequences that contain any two consecutive elements 
with ∆ > 1 are called non-contiguous subsequence. Suppose we have a sequence 
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δ:A→BCD→F→GH→IJ→JK. A→B→F and A→F→K are both subsequences 
of δ. A→B→F is a contiguous subsequence of δ since the gap distance of every 
two consecutive elements is 1, whereas A→F→K is a non-contiguous 
subsequence of δ. Because the gap distance between A and F in A→F→K is 2 
and between F and K is 3. The database D for sequence mining consists of input-
sequences. Each input-sequence can contain one to many itemsets. Each input-
sequence is identified through a unique sequence-id (sid) whereas each element 
(itemsets) is identified through a unique event-id (eid). If D contains sales data, 
the sid can be a customer-id. A common event identifier in transactional 
databases is a timestamp. We say that a sequence α has a support count γ if there 
are γ numbers of input-sequences that support it. An input-sequence supports 
sequence α if it contains at least 1 occurrence of α. Mining frequent 
subsequences from a database of input-sequences can be formulated as 
discovering all frequent subsequences whose support count γ is greater or equal 
to the user specified minimum support threshold σ. 

3 Related works 

Early in their work, Agrawal [1] introduced the problem of mining sequential 
patterns over transactions data. In [1] they proposed 2 algorithms for mining 
sequential data, AprioriAll and AprioriSome. While the problem of market 
basket analysis is concerned with finding frequent intra-transaction patterns, 
mining sequential patterns on the other hand is concerned with finding frequent 
inter-transaction patterns [5]. Further, the data used in mining sequential patterns 
has an ordered notion. A sequential pattern consists of ordered events or 
elements. We are in particular interested in finding non-contiguous subsequences 
[7]. Mining non-contiguous subsequences can be very expensive when data has 
long patterns. A concept of a constraint can be introduced. In [7] they proposed 
an improved algorithm GSP that generalizes the scope of sequential pattern 
mining to include time constraints, sliding time windows, and user-defined 
taxonomy. Mannila and Toivonen [6] proposed an approach that addresses the 
problem of sequential mining where each element of the sequences consists of 
atomic item. Similarly [11] formulated the problem of mining frequent 
subsequences from genetic sequences where each element of the sequences 
consists of an atomic item. Recently, Ezeife and Lu [4] developed an efficient 
technique PLWAP based on the concept of WAPTree that mines frequent 
subsequences of items. PLWAP is reported to have desirable scalability 
properties. Additionally it was reported that it outperforms WAPTree and GSP. 
Others [7, 12] formulated the problem of mining frequent subsequences from 
database of transaction sequences such that each element can comprise of 
multiple items. Both [7, 12] assume unordered itemsets. Zaki [12] developed an 
efficient algorithm, SPADE, for mining frequent subsequences. SPADE uses a 
vertical id-list database format and a lattice-theoretic approach to decompose the 
original search space into smaller pieces. 
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4 SEQUEST algorithm 

4.1 Database scanning  

SEQUEST scans the database Sdb twice and generates a frequent database that 
contains only frequent 1-subsequences, Sdb’ after the first scan (figure 3 [1]). Sdb’ 
is obtained by intersecting Sdb with L1 (figure 3 [2]), the set of frequent 1-
subsequences. The first scan and the second scan are executed in two separate 
runs. Sdb’ is used to construct DMA-Strips. 

4.2 Constructing DMA-Strips 

A DMA-Strip is constructed as follows (figure 3 [3]). For each item in Sdb’, an 
ordered list (strip) is generated which stores a sequence of items’ label, scope 
and eid. Each strip is uniquely identified by a sequence-id sid. To allow mining 
sequences of itemsets each item in a strip stores event-id eid and a notion of 
scope. The eid groups items in a strip based on their timestamps. The scope is 
used to determine the relationship between two consecutive items in a strip. The 
scope of an item A is determined by the position of the last item that belongs to 
the same event. If the preceding item’s position is out of the prior item’s scope 
this tells us for sequence of itemsets that the two items (say A and B) occur at 
different times, i.e. A→B. Otherwise A and B occurs at the same time the event 
is generated, i.e. AB. Through the use of the scope DMA-Strips can be used for 
both mining sequences of itemsets or items. 
 
 

 

Figure 1: Pseudo-code of SEQUEST. 

     Figure 1 shows an example of a strip of a sequence A→CEF→HJL whose sid 
is 0. The above sequence consists of 3 different events. AC, EF, and HJL belong 
to event 0, 1 and 2 respectively. The scope of A is equal to the position of the 
last item whose eid is the same as A, which is C. Hence, A’s scope is determined 
to be 1. Similarly, using the same rule, H’s scope is determined to be 6. Each 
strip can be fetched in O(1) by specifying its offset or its sid. 

4.3 Enumeration of subsequences 

The enumeration of subsequences is done by iterating a strip and extending one 
item at the time to the expanding k-subsequence. We call this a model-guided or 

0 A C A H H J L

label: A 
scope: 1 
eid: 0 

label: H 
scope: 6 
eid: 2 

sid [0]:: A→CEF→HJL 
 
                [0]     [1]     [2]     [3]      [4]    [5]     [6] 
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structured-guided enumeration as the enumeration is guided by the actual model 
or structure of the data. Figure 2 illustrates how the enumeration of AC, A→E, 
and A→H is done through the strip. Given that we have 1-subsequence I at 
position r and the strip S with size |S|, 2-subsequences are generated by 
extending I with each item J at position t on its right to the end of the strip such 
that r < t ≤ |S| (figure 3 [4]). This can be generalized to enumerating (k+1)-
subsequences from a k-subsequence (figure 3 [5]). For a k-subsequence it is 
sufficient to store only a pair of sid and the last item’s position (tail) as its 
occurrence coordinate. Hence, given an occurrence coordinate of a (k-1)-
subsequence its occurrence coordinate will be in a form of (sid,tail). Hence the 
enumeration of (k+1)-subsequences M using a strip S from a k-subsequence s 
whose encoding is φ(s), and occurrence coordinate is (p,q), where p is its sid and 
q is the tail can be formalized as follows. Suppose that C is the set of occurrence 
coordinates of (k+1)-subsequences, C={(p,t)|q< t ≤ |S|}. The encoding of the 
(k+1)-subsequences is computed by performing a scope test. We define two 
functions, Ψ(p,q) and λ(p,q) that determine the scope and label of an item in a 
strip with sid p and at position q. If t > Ψ(p,q) then the new encoding ς = φ(s) + 
‘→’ + λ(p,t) otherwise ς = φ + λ(p,t) (figure 3 [6]and[7]). For example, from 
figure 2, a strip with sid 0, extending A0 (A at position 0) with A2 (A at position 
2) generates A→A since 2 > Ψ(0,0) for the given strip. We know that Ψ(0,0) 
from figure 1 is 1. Although a constraint represents an important concept, we 
don’t particularly focus on it in this paper. However the current scheme can be 
extended easily to incorporate the gap constraint described in the previous 
section for example by restricting the extension using the event-id delta. 

4.4 Frequency counting 

We utilize a hybrid strategy enumerating subsequences by extension and 
counting by the vertical join approach to make use of the desired property from 
each technique. Enumeration by extension makes sure that the candidates 
generated are all valid. What we mean by a valid candidate is a candidate whose 
support is greater than zero. The vertical counting approach is used to help us 
achieve a space efficient and less expensive full pruning strategy. 
  
 

A C A H H J L 
 
 
 

Figure 2: Enumeration examples. 

     We define two operators inter-join and intra-join (figure 3 [10, 11]) to tackle 
both sub problems of mining sequence of itemsets and items. The inter-join 
operator is used whenever the tail items of two joinable (k-1)-subsequences are 
from different events, whereas intra-join operator is used if they are from the 
same event. Intra-join will join any two occurrence coordinates whose sid and 
eid are equal. Inter-join will join any two occurrence coordinates whose sid are 
equal but the prior eid is less than the preceding eid. If the gap constraint is to be 

A→H
A→A

AC 
  (4,0)(0,1) 

(0,2)
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introduced, it will be to define the inter-join operator by constraining the gap 
between the two eid. Space efficiency is achieved through the vertical join 
approach by freeing the memory sooner than the horizontal counting approach 
does. The details of how the less expensive full pruning is achieved through the 
vertical join approach is discussed below. 
 
 
 Sdb:Sequence Database 
 Lk:Frequent k-subsequences 
 
 L1= Scan-Sdb  [1] 
 Sdb’= Intersect(Sdb∩L1)   [2] 
 DMA-STRIPS = Construct-DMA-STRIPS(Sdb’)  [3] 
 L2 = Generate-2-Subsequences(DMA-STRIPS)  [4] 
 k=3 
 while(Lk > 0) 
    Lk= Generate-k-Subsequences(Lk-1)  [5] 
       k++ 
     

 Generate-k-Subsequences(Lk-1): 
 for each (k-1)-sequence s in Lk-1{ 
   for each occurrence-coordinate oc(sid,r) in s{ 
        for t=r+1 to |DMA-STRIPS[sid]|{ 
           if( t > scope(sid,r) ) 
               join = inter-join 
               φ(s’) = φ(s) + → + label(sid,t)  [6] 
           else 
               join = intra-join 
               φ(s’) = φ(s) + label(sid,t)  [7] 
 

           root-pruned = remove-root(φ(s’))  [8] 
           tail-pruned = φ(s’)  [9] 
           if(join == intra-join) 
              Intra-Join(root-pruned, tail-pruned)  [10] 
           else 
              Inter-Join(root-pruned, tail-pruned)  [11] 
           if( InFrequent(φ(s’)) ) 
              Prune(φ(s’)) 
           else 
              Insert(φ(s’),Lk) 
 

Figure 3: Pseudo-code of SEQUEST. 

4.5 Pruning 

According to Apriori theory a pattern is frequent if and only if all its subsets are 
frequent. To make sure that all generated subsequences do not contain infrequent 
subsequences, full (k-1) pruning must be performed. Full (k-1) pruning or full 
pruning implies that at most (k-1) numbers of (k-1)-subsequences need to be 
generated from the currently expanding k-subsequences. This process is 
expensive. Using the join approach principle, any two (k-1)-subsequence that are 
obtained from a k-subsequence by removing one node at a time can be joined to 
form the k-subsequence back. This implies that we could accelerate the full 
pruning by only doing root and tail pruning (figure 3 [8, 9]). Root pruning is 
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done by removing the root node, i.e. the first node of the sequence and checking 
if the pattern has been generated previously. Similarly, tail pruning is done by 
removing the tail node. Since we use a hashtable to perform frequency counting 
this can be done by simply checking if the pattern exists in the k-1 hashtable. If it 
does not exist we can safely prune the generated k-subsequences. However, it is 
not completely safe to assume that if both root-pruned and tail-pruned (k-1)-
subsequences exist means the generated k-subsequences must be frequent. At 
least, the root and tail pruning will do the partial check and the final check is 
done by joining the occurrence coordinates of the root-pruned and tail-pruned 
(k-1)-subsequences which is done as part of the support counting. This scheme 
can only be done using vertical support counting since vertical support counting 
counts the support of a subsequence vertically, i.e. the result is known 
immediately. Horizontal counting, on the other hand, increments the support of a 
subsequence by one at a time and the final support of a subsequence is not 
known until the database is traversed completely. 

5 Experimental results and discussions 

This section explores the effectiveness of the proposed SEQUEST algorithm, by 
comparing it with the PLWAP [4] algorithm that processes sequences of items. 
The formatting of the datasets used by PLWAP can be found in [4]. SEQUEST, 
on the other hand, uses the datasets format that is used by the IBM data generator 
[1, 7]. The minimum support σ is denoted as (Sxx), where xx is shown as the 
absolute support count. Experiments were run on Dell Rack Optimized Slim 
Servers (dual 2.8 Ghz CPU, 4Gb RAM) running Fedora 4.0 ES Linux. The 
source code for each algorithm was compiled using GNU g++ version 3.4.3 with 
–g and –O3 parameters. The datasets chosen for this experiment were previously 
used in [4], in particular data.ncust_25 (figure 4), data.100K, data.600K, 
data.ncust_125 (figure 5 and 6(a)), and data.ncust_1000 (figure 6(b)). To obtain 
the 500K dataset for experiments in figure 5 we cut the last 100K sequences 
from the data.600K dataset. 
     Figure 4(a) shows the comparison of the algorithms with respect to time, for 
varying support thresholds. In this experiment we try two schemes for 
SEQUEST, namely SH (refers to SEQUEST-hybrid) and S (refers to 
SEQUEST). SH uses a vertical join counting approach only for generating 
frequent k-sequences where k>3, whereas S uses a horizontal counting approach 
using a hashtable for all k. The results in figure 4(a) show that SH performs 
better than S and PLWAP. The performance of SH remains nearly constant for a 
very small support (σ:2 or 0.001%). The difference between SH and PLWAP 
performance at σ:2 is in the order of ~800 times. It should be noted as well that 
the memory usage of SH is much better than S due to the vertical counting 
approach used in SH. 
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Figure 4: 200K dataset (a) time performance (b) memory profiles. 

     Figure 4(b) shows comparison of memory usage between PLWAP, SH and S. 
We can see that when the horizontal counting approach is used S suffers from 
memory blow-up and this contributes to S aborting at σ≤135. SH memory 
profiles on the other hand, show a superior overall performance over the other 
two, especially when the minimum support is lowered. 
     We perform a scalability test by varying the datasets of different sizes while σ 
is fixed at 0.005%. In figure 5(a), SH outperformed PLWAP with respect to time 
in the order of ~250 times faster. In this experiment we try two different methods 
for generating frequent 2-subsequences. SH uses the structure-guided 
enumeration approach as described in the previous section, and S-L2J uses a join 
approach. Figure 6(a) shows that SH has a more linear performance than S-L2J. 
We observe that if the enumeration for 2-subsequences uses the join approach 
the time performance is up by roughly n2 if the datasets size is scaled up by n 
times. On the other hand, it is interesting to see that whenever the join approach 
is used the memory usage is slashed by almost half. 
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Figure 5: 1000K dataset (a) time performance (b) memory profiles. 
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Figure 6: (a) 1000K dataset Frequency distribution (b) 7000K time 
performance. 

     Figure 6(b) shows that SH memory usage is 2x greater than S-L2J. Overall, 
we witness that all SEQUEST variants, SH and S-L2J have outperformed 
PLWAP in terms of speed and space performance. Figure 6(a) shows the 
distribution of candidate subsequences and frequent subsequences generated over 
different dataset sizes with σ fixed at 0.005%. Figure 6(b) shows the time 
performance comparison between PLWAP and SH for a dataset of 7.8 million 
sequences. For this particular dataset, we see that PLWAP outperforms SH by a 
small margin. However at σ:2500 (0.03%), PLWAP aborted due to a memory 
blow up problem. At σ:10000 and σ:5000 the number of extracted frequent 
subsequences is relatively low, 130 and 1211 respectively. 
     PLWAP performs well whenever the average length of the extracted 
subsequences is relatively short. In other words, PLWAP performs well for large 
sparse databases but when applied to dense databases with long patterns, the 
performance is significantly reduced. In figure 4 and 5 experiments we have 
shown that PLWAP performance degrades whenever the support is set at a lower 
value and the number of frequent patterns extracted is very high. On the other 
hand, we observe that SH performs well for extracting frequent 1 and 2 
subsequences. However the performance started to degrade when generating 
3-subsequences. For this very large dataset we see that the bottleneck of SH has 
shifted from k=2 to k=3. We observe that the number of candidates generated for 
k=3 is extremely large, i.e. 10,137,400. From previous experiment in figure 5(a) 
we saw a similar property, where counting using the vertical join approach when 
the number of candidates are very large at k=2, S-L2J, although space efficient, 
suffered a non-linear performance. From this we can infer that optimal 
performance can be obtained whenever it is known when to switch from the 
horizontal to vertical join counting approach. The horizontal counting approach 
suffers from memory blow-up but is faster whenever the numbers of candidates 
generated are very large. The vertical counting join approach is space efficient 
however the performance degrades when the number of candidates to be 
generated is very large. 
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6 Concluding remarks 

Overall remarks about the algorithms are as follows. PLWAP is a space efficient 
technique but it suffers when the support is lowered and the numbers of frequent 
subsequences extracted are high. SEQUEST, on the other hand, when the 
horizontal counting approach is used suffers from a memory blow-up problem 
due to the BFS approach for generating candidate subsequences. It uses two 
hash-tables and additional space needs to be occupied when the length of the 
sequences to be enumerated increases. We also show that if SEQUEST uses a 
vertical join counting approach it performs extremely well for both speed and 
space performance. If the vertical join counting approach is used, the space can 
be freed much sooner than if the horizontal counting approach is used. The 
hybrid method of structure-guided enumeration using DMA-Strips and the 
vertical join counting approach enables SEQUEST to tackle a very large 
database and shows a linear scalability performance. However it should be noted 
that whenever the frequency of extracted subsequences are high the vertical join 
approach performance could degrade due to the nature of the join approach 
complexity. Additionally, through using the notion of scope in DMA-Strips, 
SEQUEST can process sequences of itemsets as well as sequences of items. 
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