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Abstract

We present a prototype that we have developed for analyzing so-called stochastic
ARMA models in SQL Server 2005, Analysis Services. The class of stochastic
ARMA models extends the classic ARMA time-series models by replacing
(or smoothing) the deterministic relationship between target and regressors
in these models with a conditional Gaussian distribution having a small
controllable variance. As this variance approaches zero, a stochastic ARMA
model approaches a classic ARMA model. We represent a stochastic ARMA
model as a directed graphical model. In doing so, we benefit from the ability to
apply standard graphical-model-inference algorithms during parameter estimation
(including estimation in the presence of time series with incomplete data), model
selection, and prediction. The graphical model representation also offers a visual
representation that is easy to interpretate. We demonstrate how the graphical
representation in this way lends itself as a conceptually easy way of extending
the models to handling cross predicting time series, periodicity, and trends.
Keywords: time series, graphical models, ARMA, Bayes net, SQL server.

1 Introduction

Graphical models have been used to represent time-series models for almost two
decades (e.g., Dean and Kanazawa [1]; Cooper et al. [2]). The benefits of such
representation include the ability to apply standard graphical-model-inference
algorithms for parameter estimation (including estimation in the presence of
missing data), for model selection, and for prediction. We introduce the most
fundamental concepts for this class of models when needed in this paper. A gentle
introduction and more details can be found in, for instance, Jensen [3].

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 

Data Mining VII: Data, Text and Web Mining and their Business Applications  125

doi:10.2495/DATA060131



We express the classic autoregressive moving average (ARMA) time-series
model (e.g., Box et al. [4]) as a graphical model to achieve the above mentioned
benefits. However, as demonstrated in Thiesson et al. [5] and in Thiesson and
Meek [6] the classic ARMA model includes deterministic relationships, making it
effectively impossible to estimate model parameters via standard algorithms, such
as the Expectation–Maximization (EM) algorithm or gradient-based optimization
algorithms, in this framework. Consequently, a variation of the ARMA model for
which these estimation algorithms can be applied was introduced. The variation,
called stochastic ARMA (or σARMA), replaces the deterministic component of
the ARMA model with a conditional Gaussian distribution having a small variance.
As this variance approaches zero, the stochastic ARMA model approaches the
classic ARMA model. The stochastic version of the ARMA model not only
has the desired effect of making the standard algorithms effective for parameter
estimation. It also provides a controlled and principled way of smoothing the
prediction model by accounting for the smoothing during the parameter estimation
and model selection process as opposed to just learning a classic ARMA model and
then add an additional smoothing variance to the predictions.

As demonstrated in Thiesson et al. [5] the graphical model representation is
very intuitive and is therefore very easy to extend to more sophisticated models,
including cross-predicting time series. We will in this paper concentrate more on
cross prediction—the use of one time series to help predict another time series
(e.g., Ghahramani [7]; Meek et al. [8])—and we will in an intuitive graphical way
show how cross predictors become a mean for handling periodicity and trends.

We have implemented the stochastic ARMA models as a plug-in for SQL Server
2005, Analysis Services. Detailed information on how to build a such plug-in
algorithm is available at [9]. (SQL Server 2005 is a Database server application
from Microsoft Corporation. It consists of the core Database application plus
several services including Integration Services, Reporting Services, and Analysis
Services. SQL Server Data Mining is a part of Analysis Services which also
includes Online Analytical Processing (OLAP). The Server is extensible through
Microsoft .NET-stored procedures and through plug-in algorithms and viewers.
Sample code and detailed information on how to build a plug-in algorithm is
available at www.sqlserverdatamining.com.) Our implementation is intended as a
tool for mining large data bases for cross-predicting time series, and computational
efficiency is therefore of great importance.

The graphical model framework can handle cross predictors in a theoretical
sound way, but they introduce some challenges regarding computational efficiency
during both learning and prediction. We will account for these challenges and
describe the approximations we have made in order to ensure fast learning and
prediction. We emphasize that these approximations only affect models with cross-
predicting time series.

Finally, Thiesson et al. [5] has already empirically demonstrated that stochastic
ARMA models benefit prediction by the controlled way of smoothing and by
allowing cross-predicting time series. We will not pursue the quality of stochastic
ARMA models further in this paper. Instead, experimental results will concentrate
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on the scalability of learning these models. We will demonstrate that particular
settings for the parameterization of a model can have a dramatic effect on the
computational efficiency.

2 Time-series models

We begin by introducing notation and nomenclature. We denote a temporal
sequence of observation variables by Y = (Y1, Y2, . . . , YT ), and we denote
a sub-sequence consisting of the i’th through the j’th element by Y j

i =
(Yi, Yi+1, . . . , Yj), i < j. Time-series data is a sequence of values for these
variables denoted by y = (y1, y2, . . . , yT ). We suppose that these observed
values are obtained at discrete, equispaced intervals of time. In this paper we
will consider incomplete observation sequences in the sense that some of the
observation variables may have missing observations. For notational convenience,
we will represent such a sequence of observations as a complete sequence, and it
will be clear from context that this sequence has missing observations.

The ARMA time-series models and the stochastic variants considered in this
paper, associate a latent “white noise” variable with each observable variable.
These latent variables are denoted E = (E1, E2, . . . , ET ).

Some of the models will also contain cross predictors. A cross predictor
is an observation variable from a related time series, which is used in the
predictive model for the time series under consideration. For instance, Y ′ =
(Y ′

1 , Y ′
2 , . . . , Y ′

T ′) and Y ′′ = (Y ′′
1 , Y ′′

2 , . . . , Y ′′
T ′′) may be observation variables

from related time series, where Y ′
t−12 Y ′

t−1 and Y ′′
t−1 are cross-predictor variables

for Yt. If Y ′
s is a cross predictor for Yt, it is always the case that s < t.

Let Ct denote a vector, such as (Y ′
t−12, Yt−1, Y

′′
t−1), of cross-predictor variables

for Yt. The set of cross-predictor vectors for all variables Y is denoted C =
(C1, C2, . . . , CT ).

The stochastic time-series models can handle incomplete time series, where
some values for the observation variables, Y , are missing. Hence, in real-world
situations where the length of multiple cross-predicting time series do not match,
we have two ways of insuring that Y , E, and C are all of the same length. We can
introduce observation variables with missing values, or we can shorten a sequence
of observation variables, as necessary. Both of these options are possible in our
implementation, and in the following we will therefore assume that Y , E, and C
are all of the same length.

2.1 ARMA models

In slightly different notation than usual (see, e.g., Box et al. [4]) the ARMA(p, q)
time series model is defined as the deterministic relation

Yt = ζ +
q∑

j=0

βjEt−j +
p∑

i=1

αiYt−i (1)

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 

Data Mining VII: Data, Text and Web Mining and their Business Applications  127



where ζ denotes the intercept,
∑p

i=1 αiYt−i is the autoregressive (AR) part,∑q
j=0 βjEt−j is the moving average (MA) part with β0 fixed as 1, and Et ∼

N (0, γ) is “white noise” with Et mutually independent for all t. The construction
of this model therefore involves estimation of the free parameters ζ, (α1, . . . , αp),
(β1, . . . , βq), and γ.

For a constructed model, the one step-ahead forecast Ŷt given the past can be
computed as

Ŷt = ζ +
q∑

j=1

βjEt−j +
p∑

i=1

αiYt−i (2)

where we exploit that at any time t, the error in the ARMA model can be
determined as the difference between the actual observed value and the one step-
ahead forecast

Et = Yt − Ŷt

The variance for this forecast is γ.
An ARMA model can be represented by a directed graphical model—also called

a Bayes net. A directed graphical model associates a graph with the model, where
the graph is a very intuitive representation of the structural relations in the model.
As an example, Figure 1 shows the graphical representation for an ARMA(2,2)
model. Nodes in the graphical representation represents variables in the model
and arcs represent direct relations between these variables. The representation of
an ARMA model contains both stochastic and deterministic nodes, represented
by respectively single- and double-circles. A node is deterministic if the value
of the variable represented by that node is a deterministic function of the
values for variables represented by nodes pointing to that node in the graphical
representation. Otherwise, the node is stochastic. From the definition of the
ARMA models, we see that the observable variables (the Y ’s) are represented by
deterministic nodes and the error variables (the E’s) are represented by stochastic
nodes. The relations between variables are defined by (1) and accordingly,
Yt−p, . . . , Yt−1 and Et−q, . . . , Et all point to Yt. We are interested in the
conditional likelihood models, where we condition on the first R = max(p, q)
variables. Relations between variables for t ≤ R can therefore be ignored. It
should be noted that if we artificially extend a time series back in time for R
(unobserved) time steps, this model represents what is known in the literature
as the exact likelihood model. There are alternative methods for dealing with the
beginning of a time series (see, e.g., Box et al. [4]).

2.2 σARMA models

A σARMA model is identical to an ARMA model except that the deterministic
relation in (1) is replaced by a conditional Normal distribution (with variance σ,
thereby the name). The graphical representation for a σARMA model is therefore
likewise similar to the ARMA model, the only difference being that deterministic
nodes are now stochastic.
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E1 E5E4E3E2

Y1 Y5Y4Y3Y2

Figure 1: ARMA(2,2) model.

More specifically, Yt|Et
t−q, Y

t−1
t−p ∼ N (µ, σ), where the functional expression

for the mean µ and the variance σ are shared across the observation variables. The
variance is fixed at a given (small) value to be specified by the user. The mean is
related to the regressor variables as follows

µ = ζ +
q∑

j=0

βjEt−j +
p∑

i=1

αiYt−i (3)

We see from this representation that ARMA is the limit of σARMA as σ → 0.
Thiesson et al. [5] also shows that σ becomes a minimum allowed variance for the
one step-ahead forecast and in this way takes the role as a controllable smoothing
parameter.

By fixing β0 = 1 in the ARMA model, the variance γ of Et has the semantic
of being the variance for the one-step forecast. With the additional smoothing, γ
does not carry the same semantic for a σARMA model. Without this semantic for
γ, it seems natural to consider a variation of the σARMA model class that lets β0

vary freely. Yet another variation will let σ vary freely.
Our implementation of the of σARMA models allows for all four variations,

where the parameters β0 and σ can be fixed or vary freely during parameter
estimation and model selection. Notice, however, that by letting σ vary freely we
have a more flexible model, but we lose the ability to control the smoothing.

2.3 σARMAxp models

The σARMAxp class of models includes the following generalizations of the
σARMA class: (1) a model may define multiple time series—with different p’s and
q’s in different time series, and (2) a time series is allowed additional dependencies
on observations from related time series, called cross-predictors (the ’xp’ in the
name).

Consider the part of a σARMAxp model which describes a particular time series
in the set of time series defined by the model. The representation of this time series
is similar to an σARMA model, except that Yt additionally depends on the vector
of cross predictors Ct. Let η be a vector of regression coefficients associated with
these cross predictors. In this case Yt|Et

t−q, Y
t−1
t−p , Ct ∼ N (µ, σ) with mean

µ = ζ +
q∑

j=0

βjEt−j +
p∑

i=1

αiYt−i + ηCt (4)
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The graphical representation of an σARMAxp model is shown in Figure 2.
The model represents three time series. The first time series (for observations Y )
corresponds to an σARMA(2,2) model with no cross-predictors, the second time
series (for observations Y ′) corresponds to a σARMA(1,1) model, where Yt−1 is a
cross predictor for Y ′

t , and the third time series (for observations Y ′′) corresponds
to a σARMA(1,0) model with Y ′

t−1 being a cross predictor for Y ′′
t .

E1 E5E4E3E2

Y1 Y5Y4Y3Y2

Y’1 Y’5Y’4Y’3Y’2

E’1 E'5E’4E’3E’2

Y’’1 Y’’5Y’’4Y’’3Y’’2

E’’1 E’'5E’’4E’’3E’’2

Figure 2: σARMAxp for three cross predicting time series.

Notice that the cross predictors for a time series separates all observation
and error variables for that time series from the remaining time series in the
model. Given full observations on the cross predictors, the distributions for
the individual time series in the model are therefore independent, which is an
important characteristic for a σARMAxp model. We will exploit this independence
in approximations yielding computationally efficient learning and predictions, as
described later in this paper.

Finally, it is worth mentioning that besides the stochastic nature of the
σARMAxp models, these models are different from vector ARMA models (see,
e.g., Reinsel [10]). First of all, different time series in a σARMA model may have
different numbers of AR and MA regressors, and second, cross predictors between
time series are not defined by the ARMA structure, but are chosen in a selective
way for each time series in the model (see Section 4).

3 ML estimation

We will need to define a few notational conveniences before presenting the
ML estimate for a σARMAxp model. Consider, again, a part of the model,
defining only a particular time series. Let α = (α1, . . . , αp) and β =
(β1, . . . , βq) denote the vectors of AR and MA regression coefficients for that
time series. The parameters in this part of the model are therefore given by
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θs = {ζ, α, β0, β, η, σ, γ}, where β0 and σ are fixed at a particular value, and
may be free parameters for the variations, mentioned in Section 2.2. Notice that
except for θs we have eased the notation a bit by suppressing the relation to the
particular time series (here denoted s)—but we stress that the set of parameters and
their values may be different for the different time series in the model. Similarly,
we suppress the relation to the particular time series when referring to stochastic
variables associated with that time series. Finally, the distribution for the entire
σARMAxp model is represented by the collective set of parameters for all time
series in the model θ = ×sθs, and we let θ∗ represent the associated posterior
distribution that conditions on all observations in the model.

3.1 EM algorithm

It turns out that the log-likelihood for a σARMAxp model is difficult to maximize
directly due to the latent error variables and otherwise potential incomplete data in
the statistical model. Thiesson et al. [5] and Thiesson and Meek [6] demonstrate
how the ML estimate in this case can be obtained via simple iterative estimation
algorithms, such as the EM algorithm and gradient based optimization algorithms,
respectively. Let us concentrate on the EM algorithm in the following.

Roughly speaking, the EM algorithm converts the ML estimation problem
into an converging iterative sequence of parameter updates. Let Eθ∗ denote the
expectation with respect to the posterior distribution defined by θ∗. Following
Thiesson et al. [5] each iteration in the EM algorithm then updates all free
parameters in the model by the following iterations.

3.1.1 σARMAxp

For any individual time series in the model, The parameter for the error variance
is at each iteration updated as the expected sample variance. That is,

γ ←
∑

t

Eθ∗
[
E2

t

]
/(T −R) (5)

Further, let Xt = (Et−1
t−q , Y t−1

t−p , Ct) and let φ = (β, α, η) denote the associated
regression coefficients between these variable and Yt for that particular time series.
The remaining free parameters in the model, (ζ, φ), are updated by solving the
following system of equations

∑

t

Eθ∗
[
X�

t Xt

]
φ� +

∑

t

Eθ∗
[
X�

t

]
ζ =

∑

t

Eθ∗
[
YtX

�
t

]−
∑

t

Eθ∗
[
X�

t Et

]

∑

t

Eθ∗ [Xt] φ� +
∑

t

ζ =
∑

t

Eθ∗ [Yt]−
∑

t

Eθ∗ [Et]

where � denotes transpose.
This set of equations can be singular (or close to singular) so one should be

careful and use a method robust to this situation when solving the equations. We
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use pseudo-inversion to extend the notion of inverse matrices to singular matrices
when solving the equations (see, e.g., Golub and Van Loan [11]).

Finally, by realizing that the σARMAxp model defines a Bayes net, the
expected sufficient statistics involved in the above ML estimation can be efficiently
computed by the inference technique, described in Lauritzen and Jensen [12] or
any other method for inference in Gaussian Bayes nets.

3.1.2 σARMAxp variations
In a variation of the σARMAxp model we may include β0 as one of the free
parameters in the model. Therefore this time, let Xt = (Et

t−q, Y
t−1
t−p , Ct) and

φ = (β0, β, α, η). The update for γ is the same as above, but the update for the
parameters (ζ, φ) is now obtained by solving a slightly different set of equations

∑

t

Eθ∗
[
X�

t Xt

]
φ� +

∑

t

Eθ∗
[
X�

t

]
ζ =

∑

t

Eθ∗
[
YtX

�
t

]

∑

t

Eθ∗ [Xt] φ� +
∑

t

ζ =
∑

t

Eθ∗ [Yt]

In yet another variation, we may (in addition) let σ vary freely in the model. The
update for σ is in this case obtained by first computing the expected joint sample
covariance matrix for target and regressor variables Zt = (Yt, Xt) as

Cov(Zt, Zt) =
∑

t

Eθ∗
[
Z�

t Zt

]
/(T −R)−

∑

t

Eθ∗
[
Z�

t

]∑

t

Eθ∗ [Zt]

and then derive the conditional variance for the target

σ ← Cov(Yt, Yt)− Cov(Yt, Xt)Cov(Xt, Xt)−1Cov(Xt, Yt)

3.2 Approximation

It is important to notice that the posterior distribution for the entire set of time
series in the σARMAxp model is involved in calculating the expected values used
for the above parameter updates.

The time series are coupled through cross predicting observation variables (the
Y ’s). Observations from one time series may therefore influence another time
series, either directly as a cross predictor for the time series or indirectly by
propagating through an un-observed cross predictor. For instance, if Y ′

3 is not
observed in Figure 2, the observation for Y2 will affect the Y ′′ time series. This
situation can be handled by the inference technique in Lauritzen and Jensen [12]
but can become too complex and computational expensive for our purpose.

Readers familiar with graphical models may appreciate that a particular complex
situation appears if a time series has two or more cross predictors from the same
time series. For example, let us consider a situation where time series Y has cross
predictors from time series Y ′ with lags 1 and 12.—Not an un-realistic situation if
data is monthly and cyclical by a year. In this case the cross predictors creates
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long un-broken cycles in the graphical representation of the model, Y ′
t−12 →

Y ′
t−11 → · · · → Y ′

t−1 → Yt ← Y ′
t−12 (we ignore direction of arcs). By standard

junction tree construction tecniques these cycles are triangulated, but leaves the
graphical structure used for inference in the Lauritzen and Jensen [12] algorithm
very complex.

On the other hand, if we have complete data for the cross predictors, then the
situation is different. In this case the observed cross predictors separate the time
series completely from other time series in the model, in effect de-coupling the
posterior distribution into independent distributions for each time series. Hence,
θ∗ can be replaced by θ∗s for all expectations in the parameter update formulas
above. The difference in the formulas is subtle but the effect of being able to
handle each time series as an individual σARMA time series can be significant
for the computational efficiency of the estimation procedure.

Computational efficiency is of great concern for our implementation. If cross
predictors for a time series are not completely observed we will therefore fill-
in the missing values before estimation. Notice that we still handle incomplete
data for the time series under consideration. We are therefore still partly handling
incomplete data in a theoretical sound way by exploiting the EM algorithm.

To fill-in missing values for cross predictors, we use a simple linear interpolation
from the two observed values at each side of the missing observation. We use
extrapolation from the two nearest observations, if there are no observation on one
of the sides. Other fill-in procedures are possible.

3.3 Time trends

We can extend the σARMAxp model to handle simple linear trends for any of the
time series in the model. It is achieved by including an artificial time series for time
and then allowing the remaining time series in the model to have this time series
for time as a cross predictor with zero lag. Having this extra time cross predictor
will add ηtf(t) as an extra term for the mean in (4), were f(t) denotes the time
step and ηt the coefficient for the trend.

The time cross predictor is always observed so any real time series under
consideration is completely separated from this artificial time serie; except through
the observed cross predictors. We can therefore ignore learning a model for this
artificial time series for time.

Dependence on time is not restricted to linear trends. The values f(t) used as
the artificial observations for time can be any function of time. Figure 3 shows
the graphical representation for a σARMA(1,1) model with time trend η1t + η2t

2,
where we have represented the observation variables for the artificial time series
for time by their observed values.

3.4 Periodicity

Periodicity is theoretically not a problem for the estimation algorithm.
Periodicities can, however, introduce large (un-broken) cycles in the graphical
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1 5432

Y1 Y5Y4Y3Y2

E1 E5E4E3E2

1 251694

Figure 3: σARMA(1,1) model for time series with η1t + η2t
2 trend.

representation for the model, which as mentioned above, creates a situation that
in not computationally attractive. For example, Figure 4a shows the graphical
representation for a σARMA(1,0) model with periodicities 4 and 12. We see the
cycles Yt−12 → · · · → Yt−4 ← Yt−12 and Yt−4 → · · · → Yt ← Yt−4.

To overcome the computational complexity we instead handle periodicities as
cross predictors. For a time series with periodicity we add a copy of that time series
to the σARMAxp model and then replace the regressions created by periodicities
by cross predictors from this added artificial time series in the model. The added
time series is ignored during estimation, except as cross predictor for the original
time series in question. Figure 4b shows our alternative representation for the
model in Figure 4a.

Et-12 Et-4

Yt-12 Yt-4

… …

Et

Yt

Et-12 Et-4

Yt-12 Yt-4

… …

Et

Yt

Yt-12 Yt-4
… …

Yt

Et-12 Et-4 Et

b)a)

Figure 4: a) σARMA(1,1) model with periodicities 4 and 12, and b) alternative,
approximate representation. Only periodicity regressors to the Xt

variable are shown.

If the observations in a time series with periodicities are complete, the posterior
distribution used for the parameter updates during estimation are the same for
both representations of the model. Both representations therefore yield the same
parameter estimate in this case.

It is another matter for time series with incomplete observations. Let Pt denote
the periodicity regressors in an σARMA(p,q) model at time t. For incomplete
data, the alternative representation is an approximation, which factorizes the
conditioning part of the conditional normal distribution defining the model for
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Yt|Et
t−q, Y

t−1
t−p , Pt into a non-periodicity part and a periodicity part. That is,

p(Et
t−q, Y

t−1
t−p , Pt) ≈ p(Et

t−q, Y
t−1
t−p )p(Pt). The posterior distribution used for the

parameter updates is therefore an approximation.
As for any cross predictor, we fill-in missing values for a periodicity cross

predictor in order to de-couple the two time series and thereby keep the parameter
estimation computational efficient. The time series under consideration is still
allowed to have incomplete data, but filling in missing values for periodicity
cross predictors, of course, adds to the approximate nature of the alternative
implementation.

4 Model selection

As discussed in Section 3.2, all time series are de-coupled in our implementation
through the observed—or filled-in— cross predictors. A σARMA model with
cross predictors can therefore be learned separately for each individual time series
in the σARMAxp model. It is impossible to perform an exhaustive search for a
such model. Hence, our implementation apply a greedy model selection strategy.

The selection criterion that we use for comparing alternative models during the
search allows the use of either a BIC score or a predictive accuracy score for
holdout data.

The selection strategy involves a forward-backward search when deciding
which models to evaluate during the model selection. Starting from an initial
σARMA(p,q) model – typically σARMA(0,0)– the forward search will first
greedily add AR and MA regressors before cross predictors are added. The
backward search will thereafter greedily try to remove AR and MA regressors
before any of the selected cross predictors are removed.

To stay within the class of σARMAxp models, all AR and MA regressors up
to p and q, respectively, must be included in the model. The greedy forward and
backward searches for AR and MA regressors therefore, respectively, just adds or
subtracts one from either p or q at each step in the search.

For computational efficiency reasons, the greedy forward search for cross
predictors is a little more complicated. We first pre-order a set of most promising
cross predictors according to the selection criterion score for a model with p =
q = 0 and a cross predictor. Each step in the greedy search then investigates
cross predictors in this order and includes the first cross predictor that is found
to improve the current model. The greedy search stops if none of the cross
predictors in the pre-ordered list improves the current selected model. As the
complexity of the model increases it becomes computationally more expensive to
investigate cross predictors. For that reason, the set of pre-ordered cross predictors
to investigate decreases with the complexity of the current selected model during
the forward search. The backward search for cross predictors investigates the
cross predictors in a standard greedy fashion by considering all remaining cross
predictors at each step in the greedy search.
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As mentioned in Subsections 3.3 and 3.4 the implementation handles time trends
and periodicities by the means of cross-predictors.

By including artificial time series for different time trends in the class of
selectable models, we can use the model selection method to select cross predictors
corresponding to the appropriate time trend or combination of time trends that may
be present for any of the real time series in the model.

Similarly, for each individual time series that we consider during the model
selection, we can let the procedure select periodicities in the form of cross
predictors from an extra artificial copy of that time series, as described in
Section 3.4. As an alternative—or supplement—one could also choose to apply
a method such as the Fourier analyses suggested in Vlachos et al. [13] in order to
rank and limit the number of periodicy cross predictors to be investigated during
the model search.

5 Forecasting

We now consider the problem of using a σARMAxp model to forecast. For a
given time series in the model, the task of forecasting is to calculate the marginal
distributions for future observations given previous observations for all time series
in the model. That is, the distributions p(YT+r|y), were r = 1, · · · , R, and y
denotes the observations for all time series in the model.

Consider first the simpler situation of forecasting one step into the future. In
this case we extend the model by an additional time step. For any time series in
the model, the regressor variables (ET

T−q+1, Y
T
T−p+1, CT+1) separates the added

variables (ET+1, YT+1) from the remaining variables in the model. See, for
example, Figure 2, where (E′

5, Y
′
5) is separated from the remaining variables by

(E′
4, Y

′
4 , Y4). The joint posterior distribution for the prediction variable and all its

regressors therefore factorizes as

p(ET+1
T−q+1, Y

T+1
T−p+1, CT+1|y) =

p(ET+1, YT+1|ET
T−q+1, y

T
T−p+1, cT+1)p(ET

T−q+1, y
T
T−p+1, cT+1|y) (6)

Recall that some of the observations yT
T−p+1 and cT+1 may be missing in which

case these are treated as stochastic variables rather than observations on the
right-hand side of (6). We can now obtain the predictive distribution by simply
marginalizing the posterior Normal distribution in (6) to the prediction variable
YT+1.

Let us consider the distributions involved on the right-hand side of (6)
in more detail. The distribution p(ET+1, YT+1|ET

T−q+1, y
T
T−p+1, cT+1) is

computed by inserting the observations yT
T−p+1 and cT+1 into the distribution

p(ET+1)p(YT+1|ET+1
T−q+1, Y

T
T−p+1, CT+1), as obtained from the definition of the

time series in Section 2.3. The distribution p(ET
T−q+1, y

T
T−p+1, cT+1|y) can in

preparation of the forecast be pre-computed by the general Bayes net inference
algorithm in Lauritzen and Jensen [12]. In fact, the computation of the joint
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distribution in (6) corresponds to a simple (forward) inference step in this
algorithm.

When forecasting more than one step into the future we add multiple time
steps—with un-observed values—to the model. Multi-step forecasting can in this
way be computed in a similar way as one-step forecasting by using the Bayes net
inference multiple steps forward instead of just one step.

5.1 Approximation

Recall from Subsection 3.2 that the coupling of time series through un-
observed cross predictors can cause the general inference scheme to become
complex and therefore computational expensive. Fast forecasting is a concern
for our implementation, and for that reason we consider instead the following
approximation.

In spirit with the approximation used for estimation, we will during forecasting
de-couple the individual time series in the model in the sense that we never
consider joint distributions that involves un-observed variables from multiple time
series. During estimation, this de-coupling was achieved by filling-in (hard) values
for cross predictors. For forecasting, however, we will fill-in soft values in the
sense that the problematic part on the right-hand side of (6) is approximated by

p(ET
T−q+1, y

T
T−p+1, cT+1|y) ≈ p(ET

T−q+1, y
T
T−p+1|y, cT+1)

∏

i

p∗(ci
T+1), (7)

where ci
T+1 denotes the individual cross predictor values in the vector cT+1,

and p∗(ci
T+1) is one, if ci

T+1 is an actual observed value, and otherwise it is
the approximate marginal posterior distribution for ci

T+1, as computed for that
cross predicting time series. Notice that cross predictors always refer to variables
in earlier time steps than the time step for which the forecast is performed. It is
therefore always possible to compute the posterior marginal distribution p∗(ci

T+1)
before it is needed in the above approximation.

An approximate multi-step forecast can be performed by recursively applying
(6) with the approximation in (7).

6 Evaluation

An empirical evaluation regarding the quality of predictions for σARMAxp models
can be found in Thiesson et al. [5]. That paper recommends σ = 0.01 as a
good choice for the smoothing parameter, and shows that the choice of β0 set
as either a fixed or free parameter does not affect the prediction quality. We
verified—on a few sporadic examples—that also fixed versus free σ does not affect
the quality of predictions. We will not pursue further experiments regarding the
prediction quality here. Instead, we will provide an empirical evaluation regarding
the computational consequences of these parameter choices for the learning of a
σARMAxp model.

 © 2006 WIT PressVol 37, WIT Transactions on Information and Communication Technologies,
 www.witpress.com, ISSN 1743-3517 (on-line) 

Data Mining VII: Data, Text and Web Mining and their Business Applications  137



For the experiments we used synthetic data generated from the σARMAxp

model in Figure 2, an ARMA(2,2) model, an ARMA(4,1) model, and an
ARMA(1,4) model. For each of these models we generated data from three
different parameterizations, yielding 12 different time series data sets; each
with 1000 observations. We also created—for each of the 12 data sets—four
corresponding incomplete data sets with respectively 5, 10, 20, and 40 percent
of randomly missing observations.

We used the EM algorithm to estimate models with graphical structure
corresponding to the generating models for the data sets. We evaluated all four
combinations of β0 and σ as fixed or free parameters during estimation, and
we repeated all experiments with the smoothing parameter initialized as σ =
0.001, 0.002, · · · , 0.01, 0.02, · · · , 0.1.

Let us first consider what happens when σ approaches zero regarding the
number of EM iterations before convergence and regarding the overall runtime.
Figures 5a and 5b shows—for a representable example—the number of iterations
and the runtime (on a Pentium M 1.7 GHz Tablet PC) needed to estimate a model
as a function of σ and amount of missing data. The results shown in the figures are
for estimating the σARMAxp model with fixed β0 and σ. Figures for all other
experiments are similar, except for a few experiments where large amounts of
missing data force estimation to converge at incomparable local maxima.
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Figure 5: a) Number of EM iterations and b) runtime for model estimation as a
function of σ and amount of missing data.

Thiesson et al. [5] argues that the EM algorithm will only work for σ > 0.
Figures 5a and 5b show that the convergence rate for EM decreases with smaller
values of σ, and, in fact, suggest that the algorithm comes to a complete halt when
σ = 0. The figures also illustrate that the number of iterations and the runtime
increases with the amount of missing data—not a surprise, but rather a known fact
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about the EM algorithm in general. The recommended value of σ = 0.01 seems as
a computational reasonable choice. The user should, of course, base this choice of
σ not only on computational efficiency concerns, but also the characteristics of the
problem under investigation, because this parameter—for fixed σ models—offers
a controlled way of smoothing the prediction model compared to a classic ARMA
model.

Across all experiments we saw no significant systematic difference in the
number of EM iterations needed to estimate a model for the four different
variations of models with β0 and σ fixed or free. We therefore recommend fixing
σ in order to control the smoothing variance. Also, by fixing σ we ensure that
this parameter does not incidentally move towards zero during the estimation
iterations and thereby create the computational unattractive situation, mentioned
above. We suspect that this scenario could happen, but we did not see it for any of
the experiments that we performed.

Arguably, we saw that estimating parameters for models with fixed β0 is slightly
more expensive than for models with free β0. However, if it is important to learn a
stochastic ARMA model variation most resembling a classic ARMA model, there
is no significant computational argument against fixing β0.

7 Future work

Computational efficiency was an important concern for the implementation,
described in this paper. We therefore chose to handle cross predictors and
periodicities in an approximate way during both model estimation and predictions.
These approximations will not affect models learned with completely observed
time series data, but for un-observed cross predictors these approximations will
have some effect. We would like to investigate the effect on the prediction quality,
but it demands an implementation of full inference for cross-predicting time series,
which we do not yet have.

Finally, we plan to investigate if any adjustments can be done to the EM
estimation procedure in order to speed up estimation for σ approaching zero.
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