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ABSTRACT
Real-time train arrival time prediction is crucial for providing passenger information and timely decision
support. The paper develops methods to simultaneously predict train arrival times at downstream
stations, including direct multiple output liner regression (DMOLR) and seemingly unrelated regression
(SUR) models. To capture correlations of prediction equations, two bias correction terms are tested: (1)
one-step prior prediction error and (2) upstream prediction errors. The models are validated on high-
speed trains operation data along the Swedish Southern Mainline from 2016 to 2020. The results show
that the DMOLR model slightly outperforms the SUR. The DMOLR’s prediction performance improves
up to 0.32% and 24.03% in term of RMSE and R2 respectively when upstream prediction errors are
considered.
Keywords: train arrival time predictions, direct multiple output liner regression, seemingly unrelated
regression.

1 INTRODUCTION
The accurate prediction of train movements is critical to ensure the quality and reliability of
railway transport. It provides passengers with reliable decision support, allowing them to take
proactive actions to mitigate the impact of train delays. Passengers, for example, can make
alternate travel plans if they are informed in advance of any train delays.

In passenger information systems, real-time information is utilised to generate a
continuous prediction of train arrival times for multiple downstream stations at arbitrary
prediction times. The predictions are updated in real time periodically or when the train
arrives at a station. However, most studies developed data-driven approaches to predict train
arrival times at the next train station [1]–[5]. The paper aims to model the train arrival time
prediction at multiple station and arbitrary times and explores prediction approaches and
prediction bias correction methods.

The remaining of the paper is organized as follows: Section 2 examines existing literature
on the train delay prediction. Section 3 introduces the model formulation and prediction
methodologies. Section 4 presents a case study of the high-speed train (HSR) line in Sweden.
Section 5 concludes the findings of the paper and discusses future research directions.

2 LITERATURE REVIEW
With the growing availability of data in the rail industry, a number of studies have been
conducted to predict the train delay in real-time. This task is well suited to data-driven
methods, which include statistical models, machine learning models, and deep learning
models. For statistical methods, Gorman [6] used linear regression to identify factors that
contribute to railroad congestion delays. According to Jiang et al. [7], semi-parametric models
outperform linear models, weibull distributions, binomial logistic regression, and random
forest alone while maintaining interpretability.

Machine learning methods are becoming increasingly popular due to their ability to
handle high-dimensional data and nonlinear relationships between dependent and explanatory
variables. For example, Oh et al. [8] developed a real-time dwell time prediction model for
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dynamic railway timetables by combining support vector regression (SVR), multiple linear
regression, and RF techniques using data from real-time metro operation and smartcard data.
Huang et al. [9] adopted Kalman filter to update SVR prediction using real-time information
to ensure accurate running time predictions under unexpected situations. Considering
passengers have different destinations, Tiang et al. [10] developed an arrival times prediction
model for any downstream stations rather than only the next station using direct multi-output
light gradient boosting machine. The works of Barbour et al. [11], Li et al. [12], Wen et
al. [13] and Gao et al. [14] demonstrated the superiority of RF over other data-driven methods
in predicting train events.

In recent years, deep learning methods have also been widely used to predict train delays.
For example, Wen et al. [2] and Mou et al. [15] utilised long short-term memory to predict
the arrival delay time of the train at the next station. Oneto et al. [16] employed extreme
learning machines (ELM) together with train operation data and weather data to build a
dynamic train delay prediction model. Li et al. [3] and Bao et al. [17] utilised particle swarm
optimization algorithm to optimize hyperparameter of ELM when predicting train delay
for real-time train dispatching. To comprehensively account for the temporal and spatial
dependence between multiple trains and routes, Zhang et al. [18] proposed a train spatio-
temporal graph convolutional network to predict the collective cumulative effect of train
delays.

Despite the fact that numerous efforts have been made to develop train delay prediction
models using advanced and complex algorithms, little work has been done to improve
the model through bias or error adjustment. To address this gap, we propose a prediction
framework that uses seemingly unrelated regression (SUR) to account for systematic model
bias and prediction residual correlations due to unobserved predictors, as well as bias
correction modules to improve model prediction.

3 METHODOLOGY

3.1 Problem formulation

The goal of this paper is to predict train arrival times for multiple downstream stations at
arbitrary times. This allows passengers to keep track of their own journey between two points:
origin and destination.

Consider a train line with multiple stations {i = 0, 1, 2, . . . , N}, with N being the last
station. Given the train is located at the current station i at time t, predict the train arrival times
at the downstream stations {ai+1, ai+2, . . . , aN}. The prediction model receives real-time
train operation data based on the current train location, allowing downstream train arrival time
prediction based on the most up-to-date information. When the train arrives at station i + 1,
predictions for the train arrival times at the downstream stations {ai+2, ai+3, . . . , aN} are
simultaneously updated. The prediction problem is represented as a multi-output regression
conditional on the train location.

ŷ = f(X | i), (1)

where ŷ is the predicted train arrival time for all the downstream stations; i is the current train
station; X is the predictor variables presented in Section 3.4.

Fig. 1 shows the prediction framework.

3.2 Prediction methods

In order to make train arrival time predictions for multiple downstream stations, multiple
regression models are generated simultaneously. In this study, linear regression with two
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Figure 1: Prediction framework.

different frameworks, that is (1) direct multiple output linear regression (DMOLR) and (2)
seemingly unrelated regression (SUR), are proposed to train these regression models.

The DMOLR model train the multiple linear regression equations independently with
corresponding sets of explanatory variables. The predictor variables at current station i is
inputted into N − i number of regression models to generate prediction for downstream train
arrival times âi+1, âi+2, . . . , âN . The prediction outputs are independent of one another in
DMOLR, neglecting contemporaneous correlations between prediction equation error terms.

SUR, on the other hand, is a system of linear regressions that accounts for prediction
errors that are correlated across equations [19]. Because there may be correlations between
the shared unobserved characteristics, SUR’s use of correlated errors terms across multiple
regression models may increase the likelihood of prediction. For detailed information on
SUR, see Washington et al. [20] and Brownlee [21] for more information on direct multiple
output regression.

3.3 Bias correction modules

This section introduces two iterative correction approaches: (1) one-step before prediction
error correction and (2) upstream prediction error correction. The purpose of this step
is to improve the model’s performance by leveraging the real-time observed information
(prediction errors at previous stations) along with the predictors in Section 3.4.

The model utilises real time information Xi,i at current station i where the train currently
located to make prediction for all downstream station ŷ = âi+1,i, âi+2,i, . . . , âN,i. The actual
train arrival time ai+1,i+1 is observed when the train arrives at the next station i + 1, and the
prediction error Ei+1,i+1 can be calculated using eqn (2).

Ei,i = âi,i−1 − ai,i, (2)

Computers in Railways XVIII  137

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 213, © 2022 WIT Press



138  Computers in Railways XVIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 213, © 2022 WIT Press

where Ei,i is the prediction error at station i when the train is at station i; âi,i−1 is the
predicted train arrival times for station i when the train is at station i− 1; ai,i is the actual
train arrival times for station i when the train is at station i.

For one-step before prediction error correction, only prediction error at current station
i where the train currently located, Ei,i, is utilised as a predictor together with predictors
Xi,i introduced in Section 3.4. For example, in Fig. 2(a), at T = 3, the train arrives at
station S2, the model predicts the arrival times for downstream stations {S3, S4, S5} to be
{â3,2, â4,2, â5,2}. At T = 4, the train arrives at station S3, the actual arrival times a3,3 of
station S3 is observed, the prediction error E3,3 is computed and used as predictor with X3,3

to make prediction {â4,3, â5,3} .
For upstream prediction errors correction, all previously determined prediction errors

together with prediction errors at the current station, {E1,1, . . . , Ei−1,i−1, Ei,i}, are utilised
as predictors together with Xi,i as predictors. For example, in Fig. 2(b), at T = 4, the
train arrives at station S3, the prediction error E3,3 is computed and used together with
previously computed prediction errors {E1,1, E2,2} and X3,3 as predictors to make prediction
for {â4,3, â5,3}.

3.4 Predictor variables

The train operation data is used to define predictor variables utilised in this study. Six common
factors that influence train event prediction are selected as potential predictors:

1. The arrival delay ∆ai,k of the train k at current station i
2. The departure delay ∆di,k of the train k at current station i
3. The actual dwell time dwr

i,k of the train k at current station i
4. The scheduled headway hws

i,k of the train k with previous train k − 1 at current
station i

5. The actual headway hwr
i,k of the train k with previous train k − 1 at current station i

6. The scheduled running time rs
i,k of the train k from current station i to the next station

i + 1

Y represents the times required for the train to arrive at the targeted stations given the
current station where the train is currently located. All the variables in this study are measured
in minutes.

Figure 2: (a) One-step before prediction error correction; and (b) Upstream prediction errors
correction.

(a) (b)



To avoid multicollinearity, these variables are first analysed and filtered using Pearson
Correlation. ∆ai,k is excluded since it is highly correlated to ∆di,k (with Pearson correlation
coefficient (PCC) of 0.96) and has slightly lower importance with Y than ∆di,k (with PCC
of 0.11 vs. 0.18). Thus, the predictor variables ∆ai,k, dwr

i,k, hws
i,k, hwr

i,k, rs
i,k are chosen for

the final regression model.

4 CASE STUDY
4.1 Data

The train arrival time prediction is applied to the northbound direction of the long-distance
HSR along the Swedish Southern Mainline, Sweden, from Lund C station to Linköpings C
station (red dashed line with yellow dots in Fig. 3).

We focus on four HSR (train service No. 530, 538, 542, and 546) due to the data
availability throughout the time span from December 2016 to December 2020. However,
the train headways are calculated by taking into account all types of trains that use the line.

As trains travel along the route toward the final station N , the explanatory variables used
to predict arrival times will change in time and space. To model train moving downstream
closer toward N , separate datasets with different sets of explanatory variables that reflect
different current railway traffic condition in time and space are used to train the prediction
models. Since this study area has six stations, five separate datasets are prepared.

4.2 Experimental setting

The data is cleaned before training by removing observations with missing values or
the extreme observation that exceeding two standard deviations from the central. The
StandardScaler function in the scikit-learn library is then employed to normalized continuous

Figure 3: Swedish Southern Mainline.
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variables into [0, 1]. The scikit-learn library’s MultiOutputRegressor class extends the linear
regression model to build MOLR whereas SUR models are implemented using “systemfit”
package in R.

The R-squared is used to determine the model’s goodness of fit in this study. The model
fits better if R-squared is close to one. The root-mean-square error (RMSE) is used to evaluate
the performance of prediction models in terms of estimation errors, as shown in eqn (3).

RMSE =

√√√√ 1
N

N∑
k=1

(ŷk − yk)2, (3)

where yk and ŷk respectively represent the actual and predicted arrival times, recorded in
minutes. The closer RMSE are to zero, the better the performance of the model.

4.3 Results

First, we compare the performance of SUR and DMOLR in terms of R2 and RMSE. The
SUR is found to not have an obvious advantage compared with DMOLR since DMOLR has
a slightly lower RMSE (0.05% lower than DMOLR) and no difference in R2 on overall.
This indicates that taking into account the prediction residual correlations has no significant
impact on the subsequent stations’ train arrival time prediction. Thus, the direct multi-output
regression model structure is used for further analysis.

Then, we attempt to measure the effectiveness of the bias correction approaches in
enhancing the prediction accuracy of the prediction models. The % Improvement in RMSE
and R2 is determined through the comparison between DMOLR with correction and the
baseline model, that is DMOLR without any correction using eqn (4).

Improvement (%) =
(

Ai −Bi

Bi

)
× 100%, (4)

where Ai is the model prediction performance with correction at station i station, Bi is the
model prediction performance without correction at station i (baseline model). It is important
to note that improvement in RMSE indicates a lower RMSE and opposite is true for R2.

Table 1 shows the comparison results of prediction models with or without bias correction
modules. It shows that the DMOLR model with one-step before prediction error correction
performs better than that without correction. This finding gives evidence that iterative
prediction error adjustment using real-time information enables the model to constantly adjust
itself, thus giving a slightly better prediction effect. DMOLR with upstream prediction errors
correction via exhibits a slightly more notable improvement effect over the other models in

Table 1: Percentage improvement using different bias correction modules where baseline
model is DMOLR without correction.

Model (Si+1 − SN ) Improvement one-step before Upstream prediction
prediction error correction errors correction
% Improvement in RMSE % Improvement in R2 % Improvement in RMSE % Improvement in R2

Model 1 (Hm-Lp) 0.00% 0.00% 0.00% 0.00 %
Model 2 (AV-Lp) 1.34% 5.22% 0.02% 0.09%
Model 3 (N-Lp) 0.00% 0.50% 0.17% 20.90%
Model 4 (My-Lp) 0.09% 0.36% 0.15% 0.62%
Model 5 (Lp) 0.27% 20.34% 0.32% 24.03%
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Figure 4: (a) Average RMSE; and (b) RMSE across stations.

Table 1, showing the importance of both historical and real-time information in enhancing
the performance of the models.

On the basis of previous analysis, the performance of DMOLR with upstream prediction
error correction is evaluated from other angles, in each space horizon and each evaluation
metric. Fig. 4(a) demonstrates average RMSE when moving closer toward the last station,
Linköpings c (i is closer to N ). We can notice that model 1 (Hm-Lp), which needs to
predict the arrival times for more number of stations from i to N , has the largest prediction
error with an average RMSE of 4.94 min. This is reasonable since it has more uncertainty
and fluctuations in railway traffic conditions when the distance between i and N is longer.
Fig. 4(b) explores the changes in RMSE and MAE of DMOLR at each station when the trains
move along the route. Linköpings c has the largest prediction errors since the prediction
of arrival times is a cumulative measurement. We can also observe that the prediction
performance of DMOLR at a station improves with the train moving closer to it since more
relevant real-time information that can capture the actual dynamics of traffic is used to make
predictions. However, the R2 values of these models as shown in Fig. 5 are relatively low.
This might be attributed to the use of less representative predictor variables.

Figure 5: (a) Average R2; and (b) R2 across stations.

(a) (b)

(a) (b)



5 CONCLUSION
The paper aims to develop and explore ways to improve train arrival time prediction for
multiple downstream stations at arbitrary times in passenger railway systems. Specifically,
this paper focuses on two main objectives. First, it examines whether contemporaneous
correlations between the error terms across regression equations should be taken into account
when developing prediction models. Second, the effectiveness of bias correction modules in
enhancing the prediction model performance is assessed.

The case study findings shows that the train arrival time prediction is independent of the
prediction residual correlations since the performance of SUR and DMOLR are comparable
across stations. The train arrival prediction models taking into consideration of upstream
prediction errors correction is found to be an effective in improving the prediction in
downstream stations. Future studies will improve the model by exploring deep learning
methods that could automatically capture complex interactions of variables. The low R2 of
the model indicates the need to include more predictor variables, such as historical train
operational data, passenger data, weather conditions, infrastructure information, to improve
the model’s overall representative power.
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