
Architecture description language for Cyber
Physical Systems analysis: a railway control
system case study

N. Darragi, E. M. El-Koursi & S. Collart-Dutilleul
Université Lille Nord de France and IFSTTAR-ESTAS, France

Abstract

Cyber Physical Systems (CPSs) are the next computing revolution and the
new generation of complex System of Systems (SoSs). CPSs are complex and
ubiquitous embedded devices coupled with global integration respecting Moore’s
Law. Therefore, to fit with their new characteristics, we are facing several
challenges, such as the proliferation and the integration of these systems into
scalable environments.

A main concern of embedded real-time systems is safety. For such safety-critical
systems, not only correct results count, but also the runtime duration for producing
them. To ensure the dependability of such systems, which is not a local property
of the system, but a global system property, the SoS safety has to be assessed,
evaluated and checked according to its specific runtime context.

In an attempt to address the challenges, we propose two domain specific
languages for modeling the system architecture and the dynamic behavior of
heterogenous systems and their interactions. This paper shows how to develop an
approach of real-time system design based on an extension of Milner’s Calculus
Communicating Systems since languages which are based on process algebra
provide suitable features to formalise components communications.

1 Introduction

Cyber Physical Systems (CPSs) are physical engineered systems whose operations
are monitored, coordinated, controlled and integrated by a computing and
communication core. The need to specify the architecture model of such systems
is justified by five main benefits [1]; the comprehension of the architectural

Computers in Railways XIV 227

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

doi:10.2495/CR140181

description at a level of abstraction, the reuse of the design pattern at multiple
levels, the identification of the system components and their dependencies, the
simplification of the evolution process and finally the provision of features to
analysis and consistency checking.

Development paradigms, such as object- oriented, component- oriented and
agent- oriented provide several mechanisms of abstraction, polymorphism and
encapsulation to describe CPS architectures, which have an impact on the
system architecture appearance within the whole complex implementation. The
architecture description language (ADL) is used to define the borders and bindings
between system components. According to [2], an ADL is a formal or semi-
formal notations that could be textual or graphical allowing to specify system
dynamic architecture and behavior. In the literature, several ADLs that rely on
different paradigms, have been developed to model system architecture and system
analysis and design. Some examples of well-known ADL are π-ADL [3] which is
based on the higher order typed π-calculus, AADL for (Architecture Analysis &
Design Language) [4], ACME/Plastik [5] which rely on first order predicate logic,
Dynamic Wright [6] which is based on communicating sequential processes, etc.
Several studies on ADL classification and comparison [7,8], demonstrate that these
ADLs support one or many features as below and not all of them; the architecture
description, the behavior modeling, the dynamic reconfiguration of the architecture
(i.e., the modification of a software at runtime).

In this work, we propose an ADL which relies on Milner’s π-calculus which
is an extension of Calculus for Communicating System (CCS) [9] and which
handles stochastic models. The ADL is based on a history-based specification
approach so-called GORE for Goal Oriented Requirement Engineering [10]. The
conceptualisation of the ADL with labelled transition systems is to capture a
meta-model or core model of structural and dynamic system architecture. The
benefits of GORE approach are various, such as the natural structuring of complex
requirements specifications in different formal levels (Semi-formal and formal
modeling). In fact, in GORE, goals are considered as perspective assertions that
should hold in the system concerning software-to-be, execution environment,
domain properties, expectations,... Goals provide also a precise criterion for
sufficient completeness and pertinence.Furthermore, a goal model may easily
express the complex constraints or the complex dependent behavior between
agents of the system. IPL supports the dynamic reconfiguration of embedded and
mobile systems.

In this paper, we give a brief description of our framework INSAC (INtelligent
SAfety Checker) which use the proposed ADL. INSAC is based on GORE
methodology which used to express system requirements in a high level of
abstraction in terms of objectives and goals to achieve under constraints. It uses
semantic nets for conceptual modeling of goals (services or quality of services),
agents (active system components), objects (entities, relationships, events) and
operations (Input-Output relations over objects), the first-order logic for the
specification of goals and objects and state-base specifications for operations.

228 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

Our works focus on the verification and validation of CPSs. Therefore, we
proposed the framework INSAC for the specification of CPSs requirements ,
the modeling and the formal verification. In this paper, we present a high-level
architecture description language (ADL) to describe the complex architecture of
CPSs and the scalable runtime environment interactions by using a description
language IPL (INSAC Prescription Language), and second, to describe the
dynamic of the system by using the modeling language IML (INSAC Modeling
Language).

This work is structured as follows. Section 2 describes the framework, its scope
and its architecture. Section 3 motivates this work thanks to the example of railway
telecommunication system GSM-R of the European Railway Traffic Management
System (ERTMS). The GSM-R architecture is illustrated by making use of the
proposed ADL. In the same section, an extension of IPL so-called IML for INSAC
Modeling Language is presented in order to describe the dynamic behavior model
of the CPS.

2 Intelligent safety checking framework

2.1 The scope

The INSAC framework focus on the analysis, the design and the simulation
processes of the system life-cycle. From the system requirement specifications
(SRS), structured requirements with templates guided by a context-free grammar
and based on a domain-specific ontology, are generated [11]. The analysis process
is verified and validated by a testing method [12]. The second process is the
design of specifications which provides an offline model of the SoS describing the
architecture and the dynamic behavior of each system coupled with other systems.
This step is also verified and validated by several approaches, such as well-known
and widely-used provers and model-checkers in a comparison study. The last step
is the dependability verification and the safety checking of the CPS based on
the simulation. This process provides online models which are the refinement of
offline ones. The simulation is based on MAS (Multi-Agent Systems).

2.2 The architecture

A component by definition [13] is “a piece of software offering (via an interface)
a predefined service and which is able to communicate with other components”. A
component may be composed of other components and encapsulated for a longer
lifetime of implementations. Components allow a multiple-use which means the
support of distributed and parallel execution of sub-services. It is non-context-
specific. Therefore, it could be exchangeable and it allows the linkage avoidance
of different software units.

In fact, a component is a trend to describe mechanical or electrical systems
without the need to know details about all components of the system and the
SoS. The model of a component that we proposed is shown in figure 2. The

Computers in Railways XIV 229

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

Figure 1: The scope of INSAC framework.

component model shows its main characteristics, such as the signature or the
identification ID, the type and the category of the component named in the figure 2
role, tasks which represent functional requirements, states of the components or
the functioning modes, used resources which could be local or distributed data
or objects, constraints of the run-time execution which represent in reality the
non-functional requirements, such as the safety requirements and, finally, what we
call here by communication protocol, which is the interaction strategy with other
components.

CPSs are complex SoSs composed of several components with hard time
constraints. New SoS designs should take into account the complexity of coupled
models of different involved systems and also unexpected interactions with
components from run-time environments. The component model (non-bold shapes
in figure 2) allows only the description of the human interactions with the system
via interfaces, but not the behavior of the human agent as a “component” of the
system which could be identified and defined as an entity that has an impact on the
dependability and the safety of the system.

According to this criterion, a new definition of system “components” is
proposed and shown by figure 2. Due to the complexity of SoS architectures and
interactions, it is very important to show the interaction between systems, which
could be resumed on five modes; the computation components, shared resources,
controlled plant, human operators or the larger environment.

We distinguish two categories of agents; atomic agents and compound agents.
The first category or the so-called atomic agents are those that have a simple
structure without explicit parallel composition but could perform sequential or
parallel tasks. The second category concerns the so-called compound agents which
are composed of at least two atomic agents working simultaneously.

230 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

New added characteristics are shown in bold in figure 2. The system components
are represented by agents which could be physical, logical or human entities. An
agent, according to [14, 15], is adaptive (i.e., able to understand), rational (i.e.,
entities that do “right things” given what they know [16]), autonomous entity that
is able to communicate with other agents and to react within its environment. An
agent belongs to an environment in which there is a “problem” to which rational
agents are a “solution”.

Typically, each agent has a set of capabilities (i.e., the set of methods that an
agent could perform), tasks which are the same for components, but they are re-
defined to support the new agent characteristics (see figure 2), goals (i.e., the non-
functional requirements concerning the quality of services that should be held until
the execution of tasks), a set of responsibilities, the knowledge (i.e., the internal
data and rules which are the results of “social experiences” within the execution
environment with other agents. Knowledge is changeable and adaptable to new
constraints), belief concerns the vision of the agent on its environment (i.e., the set
of environment states), a set of faults which are incorporated in the definition of
the system agent.

Figure 2: The INSAC agent model.

3 CPS architecture description using IPL

3.1 Introduction

The most important characteristic of distributed systems is communication.
When there are communication between logical components or human and
computational systems, there are some activities that should be taken into
account, such as the establishment and the generation of the communication,
the interpretation of responses and interactions, the understanding of these
interactions and the internalisation of the knowledge issued and required for
the communication by a learning process to be reused in the future with
similar situations. Since the IPL is used to describe the logical, physical and
human communication inside the SoS architecture, the proposed syntax plays an

Computers in Railways XIV 231

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

important part in guiding the user in the complex architecture modeling process.
IPL is a language with a grammar similar to the Extended Backus-Naur Form
(EBNF) providing a specific language in order to avoid ambiguity, to have a brief
and ordered descriptions.

3.2 Abstract IPL syntax

The IPL uses many concepts that are considered essential to define the dynamic
architecture and, in future works, the dynamic behavior of CPSs. In ADL these
concepts are presented as reserved words.

Agent represents a physical, logical or human entities of the SoS. It is an
adaptive, rational entity that is able to communicate with other entities of the
same “world” (i.e., System or Subsystem). Another definition says that an agent
is an object with process characteristics and which is guided by its own goals and
constraints.

Role is the main function or behavior of an agent which could be processing,
communicating, . . .

Goal is the set of requirements that must be achieved, ceased, maintained or
avoided during the execution of tasks. A goal is composed of a pattern [17], a
status and a set of states used to determine a predicate (i.e., assertions on agent
properties). This latter describes “Desires” of a BDI (Belief-Desire-Intention)
agent [18]. A goal describes situations that are desirable for the agent.

States define the belief of a BDI agent which is a predicate describing a set of
states.

Capabilities represent services, actions and abstract plans which the agent is
able to perform.

Faults represent failure modes of an agent. A fault has a type, a priority{Low,
Medium, High, Critical}, a status{corrected, non-corrected,
under-correction}

Responsibilities indicate if the agent is mainly responsible for maintaining a
goal or achieving a plan. This is used only in the case of a shared goal or plan.

Resources designates characteristics that an agent needs to perform a task.
Bindings are dynamic interactions (i.e., a single or sequence of events or

actions exchanged between agents according to a specification. It designates the
agent interfaces which include actuators (or effectors) and sensors. Called also
connector, it is an architectural entity which defines connections between agents.

Knowledge is a structured base of concepts representing information and data
acquired by the agent about its environment and formal rules (i.e., a set of
condition-action rules) determining how these data represent objects or attributes
of the current or other agents and their relationships.

CommunicationProtocol is a domain-specific ontology composed of structured
terms, which describe words used to communicate between the sender and the
receiver, and rules determining how terms are structured and used.

232 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

Configuration is a topology of agents describing how connections are
established between them.

Plan defines a sequence of sequential or parallel tasks.

The relationship between agents are managed by some reserved words as
below; “isA” designates the instantiation of an agent from a category of
entities. “as” designates the nature of an agent which could be HumanEntity,
PhysicalEntity, LogicalEntity. “belongsTo” is used to represent the
hierarchy of the agent (i.e,. its instantiation).

Figure 3: The GSM-R in ERTMS infrastructure.

3.3 GSM-R specification using IPL

The European Railway Traffic Management System (ERTMS) is composed of
three major systems; the train-based computer ETCS (European Train Control
System), the system of telecommunication GSM-R (Global System Mobile
communication for Railway) used for communication on-board/Trackside and vice
versa, and the traffic management system ETML (European Traffic Management
Layer) which is currently still in the demonstration phase.

Computers in Railways XIV 233

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

Listing 1: ERTMS Architecture using IPL

ERTMS isA Conf igura t ion ;
Agent ETCS belongsTo ERTMS;
Agent ETCS−ONB belongsTo ETCS ;
Agent ETCS−TRS belongsTo ETCS ;
Agent GSM−R−System belongsTo ERTMS;
Agent GSM−R−FN belongsTo GSM−R−System

belongsTo ETCS−TRS ; /∗ Fixed Network ∗ /
Agent GSM−R−MRD works GSM−R−System works ETCS−ONB:
/∗Mobi le Radio Dev ice (w i t h s im card) ∗ /

Role := Communicat ing .
Goal := ” Achieve a s e c u r e d message t r a n s m i s s i o n ” .
S t a t e s := {w a i t i n g , r e c e i v i n g , send ing ,

e s t a b l i s h i n g F a i l , i n d i c a t i o n L o s i n g } .
C a p a b i l i t i e s := { s t a r t S e r v i c e () , f i n i s h S e r v i c e () ,

r e q D a t a () , a l e r t () , r e p o r t P o s i t i o n () ,
c o n n e c t () , d e c o n n e c t () } .

Bindings := {E f f e c t o r P o r t , S e n s o r P o r t } .
F a u l t s := { c o n n e c t i n g E r r o r , r ece iv ingMSGError ,

sendingMSGError , p r o c e s s i n g E r r o r ,
c o n n e c t i o n L o s s e s , t r a n s m i s s i o n E r r o r ,
h a n d o v e r E r r o r , f a i l e d T o A c t i v a t e ,
f a i l e d T o C o n n e x t , f a i l e d T o T e r m i n a t e } .

R e s p o n s i b i l i t i e s := process ingLocalMSG .
Resources := SimCard ,
Knowledge := {CryptologyKey , HomeLoca t ionReg i s t e r ,

IMSI , MSISDN , PIN ,
PIN2 , RoamingData , MCC, MNC, TMSI} .

CommunicationProtocol := GSMROntology .
;
Agent ETCS−MERID works ETCS−ONB:
/∗Mobi le Euro−r a d i o i n t e r f a c e d e v i c e ∗ /
Agent ETCS−FERID works ETCS−TRS ;
/∗ Fixed Euro−r a d i o i n t e r f a c e d e v i c e ∗ /
Agent RBC works ERTMS;
Agent BSS belongsTo GSM−R−System ;
/∗ Base S t a t i o n Sys tem D e f i n i t i o n ∗ /
Agent BTS belongsTo BSS :

Role := Communicat ing .
Goal : = ” Achieve a s e c u r e d message t r a n s m i s s i o n ” .
S t a t e s := {w a i t i n g , r e c e i v i n g , s e n d i n g } .
C a p a b i l i t i e s := { r e c e i v e () , send () , s t a r t S e r v i c e () ,

f i n i s h S e r v i c e () , e s t C o n n e c t i o n () ,
a u t h e n t i f i c a t i o n () , TCHAssgnment () ,

c a l l C o n f i r m a t i o n () , s e t C i p h e r i n g M o d e () ,
a l e r t () } .

Bindings :={ S e n s o r P o r t , E f f e c t o r P o r t }
F a u l t s :={ c o n n e c t i n g E r r o r , r ece iv ingMSGError ,

sendingMSGError , p r o c e s s i n g E r r o r } .
R e s p o n s a b i l i t i e s := a c h i e v i n g T r a n s m i s s i o n .
CommunicationProtocol := GSMROntology .

;

To allow interoperability and to ensure the transition between different
signalling systems, trains are equipped by embedding subsystems so-called EVC
for European Vital Computer and the specific system of transmission, STM, for
the Specific Transmission Module.

234 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

In ETCS level 2, the trackside is composed of many elements, as shown in
figure 3, such as the Radio Block Center or Controller (RBC) which is the
management module of radio transmissions between trackside and on-board for
a limited area and the entity that delivers the movement authority (MA). RBC
handles entry and exit of trains of the controlled area including the handover, train
localisations, the allocation of free tracks. It handles perturbations and incidents,
deals with real-time data and requests for MA and works as an interface for trains
with different and various communication protocols.

3.4 IPL extension for modeling dynamic behavior

A CPS is a collection of heterogenous models and specifications. Each model is
a formal description of a system of subsystems. CPS is a set of systems working
concurrently with interactions, which is central to distributed real-time systems
such as embedded. The extension of IPL will be the IML for INSAC Modeling
Language and which is dedicated to describe the dynamic behavior of the CPS.

We distinguish two different models; the atomic model (AM) describes the
dynamic behavior of every atomic agent and the so-called cyber model (CM)
which is a coupled model driven by goals and operations where cyber capabilities
(i.e. integration capability) are performed by agents. The CM describes the
dynamic behavior of compound agents. The communication of every agent with
its environment is via interfaces or communication ports called also channels.

4 Conclusion

Due to the size and the complexity of CPSs, many challenges are encountered
when checking the safety of systems. First, we have a large amount of system
information and knowledge to extract, to handle, to understand and to design in
different levels of granularity and various perspectives.

This paper presents the INSAC Prescription Language which is a high-
level domain specific language destinated to design cyber physical systems and
the complex interactions between components called agents. The goal-oriented
requirement engineering is used to provide the framework methodology of INSAC
which use IPL at different levels of modeling.

IPL allows the description of the architecture of concurrent systems modeled by
multi-agent systems. We are working on IML, which is an extension of IPL.It is
supposed to provide features to describe the dynamic behavior of system agents
and their interactions and communications. They will support various levels of
abstractions (from high level specification to a fine granular level) which allow the
description of the concurrency, the task distribution, the real-time environmental
characteristics, the timed agents, stochastic tasks and, finally, synchronous and
asynchronous communications.

Computers in Railways XIV 235

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

References

[1] Fulkner, S., Kolp, M., Wautelet, Y., Achbany, Y.: A formal description
Language for MA Architectures.In AOIS2006, LNAI 4898, pp.143-163,
Springer-Verlag (2008)

[2] Garlan, D., Monoroe, R., Wile, D.: ACME: Architectural description
interchange language. In Proceedings of conference of the Centre for
Advanced Studies on Collaborative research. IBM Press (1997)

[3] Medvidovic, N., Taylor, R.:A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software
Engineering, 26(1):70-79 (2000)

[4] Feiler, P., H., Gluch, D., P., Hudak, J., J.: The Architecture Analysis & Design
Language (AADL): An Introduction. Publisher: Software Engineering
Institute. CMU/SEI-2006-TN-011. (2006)

[5] Garlan, D., Monoroe, R., Wile, D.: ACME: Architectural description of
component-based systems. In Foundations of Component-based Systems,
pages 47-68. (2000)

[6] Allen, A., Douence, R., Garlan, D.: Specifying dynamism in software
architectures. In proceedings of the workshop on Foundations of
Components-Based Systems, pages 11-22. (1997)

[7] Kacem, M.H., Jmaiel, M., Kacem, A.H, Drira, K.: Evaluation and
comparison of ADL based approaches for the description of dynamic
of software architectures. In proceedings of the Seventh International
Conference on Enterprise Information Systems, pages 189-195. (1997)

[8] Minora, L.,A., Buisson, J., Batista, T., V., Oquendo, F.: Issues of Architec-
tural Description Languages for Handling Dynamic Reconfiguration. In Pro-
ceedings of CAL’12. (2012)

[9] Milner, R.: A Calculus for Communicating Systems, LNCS92. (1980)
[10] Lamsweerde, A., V.: Formal specification: a roadmap. ICSE - Future of SE

Track: 147-159 (2000)
[11] Darragi, N., Collart-Dutilleul, S., El-Miloudi, E.: Requirements Specification

Methodology Based On Knowledge Engineering: A case Study of Railway
Control system. Journal of Information and Knowledge Management. ISSN
(Paper) 2224-5758, pages 37-47 (2014)

[12] Darragi, N., Collart-Dutilleul., S., El-Miloudi, E.: Modeling and Verification
Methodology for Control Systems. In proceeding of Transport Research
Arena Europe. To appear (2014)

[13] Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
ISBN 0201178885

[14] Gasser, L., Rouquette, N., Hill, R., W., Lieb, J.: Representing and Using
Organizational Knowledge in Distributed AI Systems. In Les Gasser
and Huhns, M.N., Distributed Artificial Intelligence, Volume II. Pitman
Publishers, Ltd., London (1989)

[15] Ferber J., Eco Problem Solving: how to solve a problem by interactions, In
proceedings of 9th workshop on Distributed Artificial Intelligence. (1989)

236 Computers in Railways XIV

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

[16] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. ISBN-
13: 978-0-13-207148-2. Third Edition. Pearson Edition

[17] Darragi, N., Bon, P., Collart-Dutilleul, S., El-Koursi, E.: Tropos for
Embedded Real-time Control System Modeling and Simulation. In
Proceeding Workshop on Analysis Tolls and Methodologies for Embedded
and Real-tie Systems. (2013)

[18] Bratman, M., E.: Intention, Plans, and Practical Reason. CSLI Publications.
ISBN 1-57586-192-5. (1987)

Computers in Railways XIV 237

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 135, © 2014 WIT Press

