
Train control language –
teaching computers interlocking

J. Endresen1, E. Carlson1, T. Moen1, K. J. Alme1, Ø. Haugen2,
G. K. Olsen2 & A. Svendsen2
1ABB, Bergensveien 12, 1375 Billingstad, Norway
2SINTEF, Forskningsveien 1, Oslo, Norway

Abstract

Computer specialists are rarely trained in the world of tracks and trains, while
signaling experts are rarely computer specialists. This paper is about bridging the
gap between trains and computers with a specially designed language that
enables the signaling experts to create consistent train interlocking systems. The
language is supported by tailored tools created with open source technology on
the development platform Eclipse. From the formal definition of the language in
the form of a metamodel, a graphical editor is generated. The systems created
with that graphic editor are then transformed for several purposes that are
internally consistent. The editor makes sure that the systems conform to the
language, and the language makes sure that the systems conform to the way
interlockings are designed. The transformations then produce interlocking tables
and even actual code automatically from the graphically created model.
Keywords: interlocking, Computer Based Interlocking (CBI), code generation,
Domain Specific Language (DSL), eclipse.

1 Introduction

A railway interlocking system is a system that prevents conflicting and
dangerous train movements through a network of tracks and ensures that no clear
signal is given to a train unless the requested route is safe and locked. Today all
new interlocking systems are computer based (CBI). Configuring the
interlocking system for a particular station has been a manual process requiring
multiple steps from creating and verifying the requirements (e.g. interlocking
tables) to validating the final code. This paper describes a Domain Specific

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 651

doi:10.2495/CR080631

Language for specifying stations and to allow automatic generation of
interlocking tables and the code for the CBI etc. This Train Control Language
will improve the completeness and consistency of the specifications and reduce
the human effort.

2 Current CBI development process

ABB’s Computer Based Interlocking is a hardware redundant programmable
logic controller (PLC). The two PLC’s have diversified code called A and B to
enhance the safety of the system. The current workflow for developing a specific
CBI is illustrated in Figure 1. Note that the figure shows the basic workflow and
not all the details.

Input requirement specification
Train routes

Interlocking tables
National rules

Functional specification

Design specification

Program A Program B

Integration test of A and B

Factory Acceptance Test

Site Acceptance Test

Formal review of
Functional specification

Formal review of
tools and libraries

(not repeated for every CBI)

Figure 1: Workflow for developing a specific CBI.

 The input requirement specification is made up of two parts: One part is the
customer’s and the other is the generic CBI specification. The customer’s parts
contain drawings showing the structure of the station with its basic elements
(tracks, switches, signals, track circuits, derailers etc.) and train routes and
interlocking tables. The interlocking tables are basically a set of Boolean
equations for what needs to be true before allocating a route to a train. The
national rules must also be incorporated into the CBI.
 From the above inputs ABB generates a functional specification, which is a
mapping of the interlocking tables into a set of logical equations for the CBI.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

652 Computers in Railways XI

This process is manual and hence it is susceptible to errors. To ensure that the
functional specification is correct it is formally but manually reviewed, often by
the customers themselves.
 The functional specification is further refined into the design specification,
which is very close to the PLC source code. The coding of the PLC is done by
selecting parameterized functional blocks. The development of the design
specification and the programming of the PLC are both manual operations. The
development of the A and the B code are done by two separate teams with
different tools and libraries in order to reduce the probability of common mode
failure. The libraries incorporate the national rules.
 The functional specification, tools and libraries are formally reviewed
according to the Fagan inspection method [7]. This is a structured method for
finding errors in documents such as specifications, programming code and
designs. The method is good for finding inconsistencies and errors, but time-
consuming.
 The PLC code is tested at three separate levels. The Integration tests reveal
among other things the different interpretations of the specifications by the two
development teams. The Factory and Site Acceptance tests ensure the
conformance to the input requirement specifications.
 ABB and SINTEF (the largest independent research organization in
Scandinavia) have developed a Domain Specific Language (named “Train
Control Language”) for specifying CBI’s and automating the above process. The
vision was to be able to combine the station drawing with the train routes and
interlocking tables in the TCL. From the models created in the TCL language,
the PLC code and test cases should be automatically generated. In the future the
TCL could be used by the customers eliminating one more manual step.

3 Domain specific modeling languages

Domain specific languages (DSL) can be seen as bridges between the experts of
an application domain and the experts of computer science. Application
designers and programmers need to be experts in modeling and programming
and they need to be experts in the application domain to be able to know what to
describe for the computer. Since the computer science knowledge requires a
specialist education in itself, the designers of applications are most often
computer specialists with an additional education in the area of the application.
 Creating a DSL is a way to make it possible for application domain experts to
become designers of the applications with no loss in generality or efficiency. The
application domain experts will design the application by using the DSL while
the computer specialists are responsible for implementing the DSL with
supporting tools. The DSL must be created and this requires close cooperation
between computer language experts and domain experts.
 When the DSL has been created and the supporting tools have been produced,
the application specialists can apply the language to design new applications.
The idea is that we now see other persons making the applications. Application
experts with little knowledge of modeling should be able to produce computer

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 653

based systems. The computer language specialists will concentrate on improving
the tool implementations and the code automatically generated from the DSL
editors.

4 Train Control Language (TCL)

We shall now walk through the definition of a DSL called TCL, Train Control
Language. The purpose of the language is to define train stations from the point
of the interlocking.

4.1 Defining TCL

The definition of a DSL is done through a metamodel. A metamodel is a model
of the language. It defines the language concepts and the relations between these
concepts. Typically we apply class diagrams from UML [9] to define
metamodels. UML is a general modeling language. Figure 2 shows one small
part of the TCL metamodel that we shall use to explain the essence of
metamodeling.
 A Station has a name and it contains Tracks, TrackCircuits and Stillers (local
route setting device). A station contains even more objects, but they are not
included in our extract in Figure 2. Each of these concepts (or “metaclasses”)
contains attributes that describe values that add to their definition. Tracks have a
name, a length, a gradient and speed limits.

Figure 2: A small piece of the TCL metamodel.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

654 Computers in Railways XI

 We also notice the relation (association) between TrainRoute and
TrackCircuit. This relation describes that a TrainRoute involves a number of
TrackCircuits.
 Thus we have explained three important characteristics of a metamodel,
namely the composition (Stations contain TrackCircuits etc.), attributes (Station
has a name) and relations (TrainRoute refers to a number of TrackCircuits).
 In Figure 3 we show how conceptual generalization hierarchies are described
in the metamodel. A Switch is a special type of Track and Switches come in two
variants, RemoteSwitches and ManualSwitches. The point of defining such
inheritance hierarchies is to define similarities between concepts and this will
normally make the language description more compact and concise. Whatever
we define for all Tracks should also hold for all Switches.

Figure 3: Track inheritance hierarchy.

 In order to show the overall complexity of a metamodel for a fairly simple
language we present the full TCL metamodel in Figure 4 even though the texts
are barely readable.
 As a comparison a general purpose modeling language like UML will have
hundreds of metaclasses. Since TCL is developed exclusively for this domain,
the level of abstraction can be raised and a more precise model of the train
domain can be produced.
 The metamodel defines the terms of the language and the logical way they
connect together. In fact the metamodel is a model of the internal representation
of some description in the DSL. But the metamodel says neither in itself
anything about how the language will appear for the user, nor what the meaning

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 655

Figure 4: The whole TCL prototype metamodel.

of the terms should be. In other words for the TCL we do not yet know how we
would recognize a Switch in a description of a Station, and we do not really
know what a Switch is meant to be or do.

4.2 The concrete syntax of TCL

We have now presented the metamodel of TCL, but we want to know how the
terms will appear for the TCL users. This is what we call concrete syntax of the
language. We need to determine whether we want to define train stations in a
graphic way or through lines of text. We have chosen to define train stations
graphically.
 The basic technology that we have used to define TCL and its supporting
tools come from the open source community eclipse.org and its modeling
framework EMF [5]. There exists an umbrella over EMF called GMF [4] that
can be used to define the graphics of the terms of the metamodel. For each of the
metaclasses symbols and connections are defined and associated with the
respective metaclasses.
 For TCL a description of a train station will look as depicted in Figure 5.

Figure 5: Concrete graphic TCL of a train station.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

656 Computers in Railways XI

 In fact the GMF technology helps produce an editor for TCL based on the
metamodel and the graphic definitions. This editor is embedded into the eclipse
environment.

4.3 The semantics of TCL

Now we have an editor and we have a definition of the abstract and concrete
syntax of TCL. We still do not know what the meaning of our drawings is. Given
that the notation has been taken from traditional train notations, the computer
generated drawings could be used to communicate between train specialists that
have a prior understanding of these symbols. This is not, however, our main
goal. We want to use TCL to make the signaling experts able to design the
interlocking systems all the way such that the interlocking systems will actually
work safely without having to bring in programmers to interpret the signaling
experts’ designs.
 What we need is to define the meaning of the TCL language and we do that
by defining how to generate interlocking code directly from the TCL
descriptions. To define the code generators we use the tool MOFscript [6, 8] that
have been developed at SINTEF.
 To give an idea of what this code generation definition look like, we show in
Figure 6 a piece of a MOFscript program. The MOFscript program contains

 'Togvegsperrefunksjon for skifteveg (Tsp.' cName')\n\n'
 'Gren_1_Tsp.' cName '\n'
 'Boolsk uttrykk:\n'
 'Gren_1_Tsp.' cName '\t= TO.Tsp.' cName ' * Tsp.H' startName '/'
 if (tr.routeName.size() > 2){ //if not fik.sign: print an extra 'H'
 'H'
 }
 endName '\n\n'

 'Gren_2_Tsp.' cName '\n'
 'Boolsk uttrykk:\n'
 'Gren_2_Tsp.' cName '\t= Tsp.H' startName '/'
 if (tr.routeName.size() > 2){ //if not fik.sign: print an extra 'H'
 'H'
 }
 endName ' * Sf.' tr.trackCircuits.first().name ' * ('

 foundSwitch = false
 tr.trackCircuits->forEach(tc:station.TrackCircuit){
 tc.tracks->forEach(track:station.Track){
 if (track.oclIsKindOf(station.RemoteSwitch)){
 if (foundSwitch){ //do not write this char if this is the first switch
 ' * '
 }
 track.name.substring(0, 1) 'K' track.name.substring(1, 2)
 if (tr.routeName.substring(1, 2).equals("2")){
 '+'
 }else{
 '-'
 }

Figure 6: MOFscript example (extracts).

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 657

statements to generate fixed text, and statements to fetch variable information
from the repository. The repository is defined by the TCL metamodel and since
the MOFscript engine has been made aware of the TCL metamodel it is able to
interpret the instructions to fetch the values from the repository. MOFscript also
provides simple control structures like loops and conditionals.
 It is clear that the MOFscript definitions must be made by specialists in code
generation, but they need to work in close cooperation with the domain experts
to know what to produce. In our case we produce functional specifications in the
form of logical predicates for the interlocking.
 We can make code generators for different formats. We have made generators
that take a TCL description and produce the interlocking table in tabular form as
shown in Figure 7. That interlocking table is produced from the definition of the
station shown in Figure 5.

Figure 7: Interlocking table.

5 Advantages gained using TCL

The big advantage of the approach is that the domain specific language TCL is a
clear interface between the realms of computer science and that of signaling.
TCL makes the signaling experts capable of creating advanced computer systems
without knowing the details of computer programming.
 The development of safety related systems for railway is governed by three
CENELEC European Norms, EN 50126 [1], EN 50128 [2] and EN 50129 [3].
The norms advocate that a development shall be done according to the V-model
with distinct phases with predefined activities. The V-model is a software
development process where specification, design and development are on the left
part of the V, and integration, test and validation are on the right part of the V.
The verification of each phase consists of ensuring that the output from the phase
is fulfilling the input requirements to the phase.
 Using TCL does not influence the V-model approach currently applied by
ABB. TCL provides automatic generation of several different artifacts
previously manually developed. The integration, test and validation will still be
performed but in addition some automatic validation can be supported.

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

658 Computers in Railways XI

 If we walk through the software techniques recommended in [2] we find that
the TCL approach complies at least as well with these recommendations as does
the traditional development. TCL can be said to be “Formal methods” as the
language is precisely defined. Using TCL is obviously also a “modular
approach” and can be seen to constitute “design and coding standards” since the
code generation can be designed to follow said standards. The TCL translators
will have to be “proven in use”, but since the TCL language is more manageable
than general purpose languages a systematic testing of the code generators is
feasible.
 The model may also be checked for consistency and completeness, either
directly on the model itself, or through generating formats of logic that are then
analyzed by existing tools. In this way much of the tedious and error-prone
manual controls can be eliminated and the highly competent signaling experts
can instead be used to refine the designs through the TCL language.
 The redundancy introduced by the A and B teams as explained by Figure 1
can be achieved in the TCL approach by applying different teams to design
alternative code generators. Furthermore while some tests can be produced
automatically from the TCL specification, other corresponding tests should be
made manually.

6 Conclusion

We have shown how creating a domain specific language TCL can improve the
development process of interlocking systems. Signaling experts will to a larger
extent be able to design the systems directly. The interlocking systems will be
directly generated from the graphic representation and auxiliary representations
will be produced for validation and tests. The traditional manual work will be
eliminated or minimized.
 From our experiences with the prototype system we believe that the approach
has definite potentials, but comprehensive validation of the code generators is
needed as well as more experiments with larger stations must be conducted since
bigger stations also imply more intricate combinatory constraints. Such
constraints should in fact lend themselves well to the more automated approach.

Acknowledgements

The work presented here has been developed within the MoSiS project ITEA 2 –
ip06035 part of the Eureka framework.

References

[1] CENELEC, “EN 50126: Railway Applications - The specification and
Demonstration of Reliability, Availability, Maintainability and Safety
(RAMS),” CENELEC

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

Computers in Railways XI 659

[2] CENELEC, “EN 50128: Railway Applications – Communication, Signaling
and Processing Systems – Software for Railway Control and Protection
Systems,” CENELEC

[3] CENELEC, “EN 50129: Railway Applications: Safety Related Electronic
Systems for Signaling,” CENELEC

[4] eclipse.org, “Eclipse Graphical Modeling Framework (GMF).”
http://www.eclipse.org/modeling/gmf/

[5] eclipse.org, “Eclipse Modeling Framework Project (EMF).”
http://www.eclipse.org/modeling/emf/

[6] eclipse.org, “MOFScript.” http://www.eclipse.org/gmt/mofscript/
[7] Fagan, M.E.: Design and Code Inspections to Reduce Errors in Program

Development. IBM Systems Journal. 15, 182–211 (1976)
[8] Oldevik, J., “MOFScript Eclipse Plug-In: Metamodel-Based Code

Generation”, in Eclipse Technology Workshop (EtX) at ECOOP 2006.
Nantes, (2006)

[9] OMG, “UML Superstructure V 2.1.2 ” OMG formal/2007-11-02, November
2007 (2007),

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line)

660 Computers in Railways XI

