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Abstract 

The increasing demands for rail units, requiring among other aspects optimal and 
accurate conditions to mount the catenary, needs a rigorous mechanical 
calculation where the development of the corresponding computer software is 
essential in order to solve the various problems in a satisfactory manner. Most of 
the work done at the moment are based on two-dimensional models, but that 
model is not quite realistic because the catenary is a structural system, consisting 
of wires arranged in a zigzag, considering different types of loading as the 
weight of the wires or the wind effect, acting such charges in different directions. 
The development of an advanced model in three dimensions can be of great help 
to achieve more realistic results. This paper is an introduction to the study of 
mechanical railway catenary based on a three-dimensional model, the method 
presented here allows different types of static problems to be solved, such as the 
calculation of the stiffness of the line and the calculation of the length of the 
droppers.  
Keywords: railway catenary, static problems, three dimensional models, length 
of the droppers, effect of the wind. 

1 Introduction 

In order to obtain an adequate performance in the circulation of the railway units, 
the pantograph-catenary contact force should be maintained as uniform as 
possible, avoiding the lost of contact or take offs. This requires, among other 
aspects, precise conditions of assembly and a suitable configuration of the aerial 
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line of contact or catenary. The requirements, every time increasing, for the 
railway units, in speed, reliability, etc., make it necessary to work on more 
complex and realistic models. The development of an advanced mathematical 
model that allows us to evaluate the mechanical behaviour of the system can be 
helpful in order to obtain optimal conditions of assembly.  
 

Figure 1: A span of catenary. 

     In the mechanical study of the aerial line of contact, different types of 
problems can be considered: calculation of the length of the droppers, to study 
the stiffness of the line, or to study the pantograph-catenary dynamic interaction. 
In most of the works realised until now, either in the study of problems of static 
type (see Galleotti and Toni [6] and Buffarini [7]), or of dynamic type (see 
Arnold and Simeon [1], and Benet et al [3]), the models are based on two 
dimensions. Nevertheless, this kind of model is not real, since the catenary is a 
structural system formed by cables, with lines distributed in zigzag, in the case of 
straight trajectories; or making a polygonal line, in the case of curved 
trajectories, with different types of load: weight of cables, effect of wind, acting 
in different directions, and so on.  
     Due to all these reasons, the traditional model of two dimensions becomes 
insufficient to solve in an adequate way the previous problems, being necessary 
the development of a more advanced model, considering three dimensions. The 
present work is an introduction to the mechanical study of railway catenary wires 
in three dimensions. A mathematical model based on the Finite Element Method 
(FEM) has been developed, which allows us to obtain the equations of static 
balance, from which different problems can be solved, such as the calculation of 
the stiffness of the line, and the length of the droppers. 
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Figure 2: A pre-stressed beam. 

2 Model of the contact wire and carrier 

The aerial line of contact, or catenary, is modelled considering a series of spans, 
normally 15 or 20, constituting each series an independent system. The spans 
usually present, in addition, a length of about 60 m. In the European railways 
two types of assemblies can be basically considered: the normal catenary system, 
and the stitched catenary system.  
     In fig. 1 is showed a span of a normal catenary, in which three types of cables 
can be distinguished: the carrier, the droppers, and the contact wire. Both wires, 
the carrier and the contact wire, are tightened by pulleys and independent 
counterbalances, located at the ends of each series. The catenary is, then, a 
continuous system that can be modelled applying the techniques of FEM 
analysis, in agreement with is indicated by Bathe [2] and Cook et al [5].  
     With regard to carrier and contact wire, their model is obtained from the 
Euler-Bernouilli equation for a prestressed flexible beam under a vertical force 
of its own weight, and under the lateral effect of the wind. For the system of axes 
of the figure an element of the wire, represented in fig. 2, is considered like a 
prestressed beam, presenting four coordinates generalized by node: the 
displacement and the angle according to the y-axis, and the z-axis. The equation 
of balance for a cable element can be represented as a system of eight linear 
equations, which can be expressed of generic form as:  

cccccccc rqkkrqkf −+=−= )( 21 .                               (1) 
     Where fc is the resulting vector of the forces and external moments applying 
at the nodes, kc represents the stiffness matrix of the element, which can be 
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spitted in two matrices, the first one, kc1, is the stiffness matrix corresponding to 
the elastic potential of flexion, and being kc2 the stiffness matrix corresponding 
to the pre-stressed potential, and rc is the vector corresponding to the vertical 
load (weight) and the lateral load (wind), being the components from the eqn. (1) 
for an element of length l: 
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     For the component of the stiffness matrix kc2, corresponding to the pre-
stressed potential of the wire, and for the generalized coordinates vector: 
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     Being py the vertical weight of the wire by length unit, pz the load of the wind 
by length unit (positive o negative), T the mechanical tension of the wire, I the 
moment of diametrical inertia and E the elastic module of the material.    

3 Model of droppers 

The droppers behave like elastic traction bars, with an initial length l0, and 
stretched a small quantity ∆l, reaching a final length of l, according with the 
outline presented in fig. 3. In this case, each generalized node has two 
coordinates, corresponding to displacements according to the y-axis and, the z-
axis, not experiencing any variation depending on the x-axis. The equations of 
static equilibrium will be: 
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Figure 3: Model of a dropper. 

     These equations can be written in matrix form, similar to eqn. (1), where: 
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     Where E is the elastic module of the material, A the area of the section, py, the 
downwards force by unit of length due to the weight of the dropper, pz is the 
lateral force by unit of length due to the wind (positive or negative) and φ the 
inclination angle of the dropper with respect to the vertical. P1(x1,y1,z1) and 
P2(x2,y2,z2) represent the extreme nodes of the dropper, according with fig. 3, and 
also satisfying: 
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     Furthermore, the droppers work always by traction, so that their effect on the 
static or dynamic equations only is considered when the actual length, taken as 
the extreme distance between nodes, is greater than or equal to the initial length 
l0, determined in a previous static calculation, that is: 
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4 Equations of static equilibrium 

According with all the explained above, the equation of the static equilibrium of 
the catenary can be expressed by combining the equilibrium equations of each 
element, corresponding to the decomposition by the FEM, and equalling to zero 
the resulting composition of the forces: 

0)()( =−= qRqqKF .                                (8) 
     Where the elements in the equations are: 

)()(,)(, qrqRkqKfF ∑∑∑ === . 

     The eqn. (8), corresponding to the static equilibrium condition of the catenary 
is actually a nonlinear equations system, where K(q) represents the stiffness 
matrix of the catenary. This matrix, obtained as a sum of the stiffness matrices of 
the elements, is not a constant matrix, because for a given state of load, it has to 
be included in this addition the corresponding stiffness matrices of the droppers 
working on traction, which is impossible to know beforehand. The matrix K(q) is 
a sparse matrix, being advisable the use of any specific software package in 
accordance with Duff et al [4], to solve eqn. (8), in order to obtain a greater 
computational efficiency.  
     The independent term R(q) is also variable, because the independent terms of 
the corresponding droppers, depend on the coordinates of the extreme nodes of 
the droppers, according with eqns. (5) and (6). Moreover, as it occurs with the 
stiffness matrix, it only has to be included the independent terms of the droppers 
working on traction.  
     Also, it is possible to determine the position of equilibrium in the catenary, 
for a given state of load, by solving eqn. (8) of static equilibrium, using an 
iterative method. An algorithm defining the stiffness matrix and the independent 
term for each step has been developed. We have supposed a state of loads due to 
the lateral action of the wind, the weight of the elements, and an upward force on 
time, as it may be the thrust of the pantograph, and also taking into account the 
disconnection of the droppers. According with this, the algorithm to calculate the 
position of equilibrium is:  
     1. The stiffness matrix of the catenary K(q) is configured, with the initial 
assumption that all the droppers are working on traction.  
     2. It is further assumed initially that the ends of the droppers are on the same 
vertical line, this means that φ = 0 in eqn. (5), setting the independent term, 
represented by R0(q).  
     3. For the aforementioned assumptions, it is solved the equation in the form 
of the linear system:  

0)().( 1 =−+ qRqqK ii .                                  (9) 

where the subscript i represents the iteration counter, initially i = 0. 
     4. It is compared the solution of eqn. (9), qi+1, corresponding to the iteration i 
+1, with the solution obtained in the previous iteration, represented by qi. If the 
difference is below a certain error value, the last solution is considered the 
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correct solution of (9) for the supposed number of connected droppers, on the 
contrary, it is set up the independent term Ri+1(q) with the obtained value of qi+1, 
repeating the cycle until the error is below a certain value.  
     5. The obtained solution of eqn. (9) is valid for the assumed number of 
connected droppers (originally it was considered that all the droppers were 
working on traction), but this assumption can be changed for the new solution 
obtained. For this, the droppers working on traction from the last position of 
balance calculated, have to be determined, verifying that the actual length is 
greater than or equal to the initial length, according to eqn. (7). This condition 
should be checked for all droppers supposed working on traction before, and the 
stiffness matrix K(q) and the independent term R(q) must be reconfigured for the 
new condition, coming back to point 3 and repeating the process again. In the 
case that the condition (7) is fulfilled for all the droppers supposed initially 
working on traction, the last solution obtained from (9) is the final solution for 
the position of equilibrium.      

5 Calculation of the length of the droppers 

With the calculation of the equilibrium positions of the wires, another important 
static issue related to the assembly of the line, consists in determining the length 
of the droppers, so that the contact wire acquires a particular configuration 
previously imposed. Although there are different ways to solve this problem, a 
possible method is to use eqn. (8), but making some modifications. Thus, in eqn. 
(5), corresponding to the terms of the equilibrium equation for the droppers, the 
coordinate y2 of the node corresponding to the lower position of the dropper is 
now considered as a datum that corresponds to the position imposed on the 
contact wire: either parallel to the plane of the ground, either parabolic with a 
separation in the centre (pre-sag), etc. while the initial length l0 becomes a 
variable, and the rest of the positions of the nodes of the wires also remain 
variable; on the other hand, the stiffness of the dropper which, in principle, has 
an unknown value EA/l0 , due that we do not know its original length l0, should 
be replaced by a high-value (106 N/m or more), represented by k, then, the terms 
of eqn. (4) for the equilibrium of the droppers are:  
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     Equations (2) and (3) relate the elements of prestressed beam type of the 
contact wire, it also should be changed for the coordinate y1 or y2 in the case in 
that the node element is jointed with a dropper, passing this coordinates to be a 
datum. Thus, it is possible to obtain the equilibrium equation in the form of a 
nonlinear equations system, similar to eqn. (8), which can be solved through an 
iterative method to determine the length of the droppers l0; in this case it is 
assumed by hypothesis that all the droppers are connected and are working by 
traction, with absence of lateral effect of the wind. After determining the length 
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Figure 4: Offset of contact wire at the central span.  

of the droppers, the traction force and the weight of the droppers can be 
calculated also. 

6 Applications 

The theoretical procedures explained before, allow us to assemble the stiffness 
matrix for a series of catenary spans and to determine the equilibrium 
configuration of the system, assuming different states of forces. A sequence of 
three catenary spans has been supposed, each one has 40 m of length, arranged in 
a zigzag, an off-centre of 0.2 m, with copper wires of 12 mm diameter in the 
carrier and contact wire; a tension of 10000 N in both extremes of the carrier and 
contact wire, and seven droppers in the span, distributed in an equidistant way 
has been considered also; it has been assumed that the contact wire is horizontal 
and parallel to the plane of the ground.  
     With this characteristics, first, the length of the droppers has been calculated, 
by solving the eqn. (8) of static equilibrium, using eqn. (10), by the method 
proposed in the preceding section, obtained for the three spans, the lengths, 
forces and weights of the droppers given by table 1:  

Table 1:  Features of the droppers. 

Dropper 
number 

Length (mm) Load force (N) Weight force 
(N) 

1 1021.39 51.227 2.22 
2 893.95 50.94 1.94 
3 817.53 50.78 1.85 
4 792.09 50.724 1.73 
5 817.53 50.78 1.85 
6 893.95 50.94 1.94 
7 1021.39 51.227 2.22 

 © 2008 WIT PressWIT Transactions on The Built Environment, Vol 103,
 www.witpress.com, ISSN 1743-3509 (on-line) 

378  Computers in Railways XI



     Then, the stiffness matrix of the system has been configured for the obtained 
length and weight of the droppers, and the equilibrium positions of the wires 
have been calculated, according to eqn. (8) for different states of forces. First, we 
calculate the equilibrium positions when the forces only were due to the weight 
of the wires. After that, we calculate again the position of equilibrium assuming 
wind acting in a positive direction in the z-axis of 80 km/h, causing a lateral 
force of 3.2 N/m on the wires. The effect of the wind has produced a vertical and 
lateral displacement on the wires, which has been compared with the initial 
position without wind, having represented such a shift for the contact wire of the 
central span, corresponding to the first two graphs in fig. 4. It can be further 
noted that the wind does a considerable effect on the equilibrium configuration 
of the catenary, producing significant displacements, both vertical and 
horizontal, which can affect later in the pantograph-catenary interaction. 
     Finally, it has been assumed, in addition to the wind, an upwards force, as it 
may be the one produced by the pressure of the pantograph, of 120 N, acting at 
different points along the central span, having represented in the third graphic the 
vertical displacement of the point of application of the force with respect to the 
starting position of the catenary without wind effect. This third chart is known as 
stiffness span curve, and we can see that the vertical displacement of the point of 
application of the force is much higher in the centre of the span than in the 
extreme. In this case, we can also observe that the effect of the wind does not 
have much influence on the shape of the stiffness curve. 

7 Conclusions 

In this paper, we have developed a model to make an advanced mechanical study 
of railway catenary in three dimensions. Most of the studies realized up to now, 
are based on two-dimensional models; but that model is not real, because the 
catenary is a structural system formed by cables with different configurations, 
depending on whether it is straight or curved paths, and different types of forces, 
as the weight of the wires or the side-effect wind. The presented model takes into 
account all these details, allowing the knowledge of the behaviour of the system 
in a completely realistic way.  
     In order to develop the model, the Finite Element Method has been applied, in 
which carrier and contact wires are treated as pre-stressed beams and droppers as 
stretched bars. The static equilibrium equations of the system have been 
established, obtaining a nonlinear equations system that can be solved by using 
an iterative method. It is also possible, with these equations, to calculate the 
length of the droppers for several configurations of the contact wire. As 
application, we have studied the equilibrium configuration of the line with 
different cases of forces, assuming the action side of the wind. The model 
presented can also be implemented in a computer tool, suitable for the study of 
the pantograph-catenary dynamic interaction, allowing us to obtain very realistic 
simulations. 
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