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Abstract 

The mitigation of the vibrations of components and structures, through the use of 
rubber mounts, is a common practice in many industries, such as in automotives 
and aeronautics or energy. It is a very important issue, because it is a key factor 
not just for the fatigue life but also for matters of comfort. On the other side, 
these industries make extensive use of finite element models to predict the 
dynamic behaviour of structures. Therefore, it means that the non-linear 
constitutive equations of rubber mount devices need to be properly integrated 
into the global analytical model. The quasi-static and dynamic behaviour of these 
devices can be quite complex, because they are usually done by a steel cover 
with an elastomer inside. Experimental test campaigns are usually carried 
forward to characterize the quasi-static and dynamic behaviour in terms of 
dynamic stiffness and loss factor. The experiments are designed to determine 
dependency on the frequency, the dynamic amplitude, the temperature and the 
preload. 
     In this paper an optimization methodology, combining hyper-elasticity, visco-
elasticity and elasto-plasticity constitutive equations will be presented to obtain 
representative elastomeric behaviour, able to fit the experimental data in hand 
and to predict the rubber mount behaviour in load conditions different from those 
tested. The numerical results obtained are in very good agreement with the 
experimental data.  
Keywords: elastomers, hyperelasticity, elastoplasticity, viscoelasticity, aircraft 
structures, optimization methods. 
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1 Introduction 

Elastomers are a class of material present in many locations in aircraft structures. 
They are used as supporting devices, vibrations absorbers or joint elements. 
Nowadays, structural analysis of aircraft structures is done using finite element 
models and they must include all materials present in the aircraft. While metallic 
materials or even composites can be defined quite accurately by linear elastic 
behaviour, elastomers exhibit a more complex response. Experimental results 
show that hysteretic loops appear after the material is loaded and unloaded 
several times. The geometry of the loop depends on the material properties and 
the characteristic of the load.  For giving material loads with constant frequency 
and varying amplitude produce a loop (as shown in figure 1(a)). On the other 
hand, a load with a constant amplitude and varying frequency corresponds to the 
loop represented in figure 1(b). 
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                                (a)                                                              (b) 

Figure 1: Shape of hysteretic loop: (a) constant frequency; (b) constant 
amplitude. 

2 Formulation of hyperelastic, viscoelastic and elastoplastic 
(HEVEP) element 

A quite comprehensive and efficient approach of defining elastomeric materials 
response is to consider them as a combination of hyperelastic, viscoelastic and 
elastoplastic behaviour (HEVEP). Consequently a description of the constitutive 
equations of these classes of materials is next presented. 

2.1 Formulation of hyperelastic element 

There are several formulations for hyperelastic elements depending, amongst 
other considerations, on their compressibility or incompressibility and relevant 
contributions have been made by Bonet and Wood [1], Shabana [2, 3], 
Belytschko et al. [4] or Martins et al. [5]. In our study, a model proposed by 
Yeoh [6] that has proven to be very efficient for rubber materials was selected. 
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For this model the strain energy function W is defined as a function of the first 
invariant of the right Cauchy–Green deformation tensor I1. 
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Usually N=3 and in some cases different coefficients are used for positive and 
negative deformations. In that case expression (1) becomes 
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where ciT  and ciC are the coefficients for tensile and compressive stresses. It is 
well known that invariants are expressed in term of the stretches i (i = 1,...3) 
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For incompressible materials I2=1 and if the elastomeric material is subject to an 
uniaxial test it turns out 
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Stress/strain relationship becomes according to Holzapfel [7]. 
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Thus, force/displacement relationship can be obtained by knowing that 
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where FH is the applied force, Ao specimen cross section, lo initial specimen 
length and u the measured displacement in the uniaxial test. 

2.2 Formulation of elastoplastic material 

Elastoplastic behaviour is represented by a friction element. Force Fp 
corresponding to the elastoplastic behaviour is established using the values of 
displacement up that defines the sliding phase. In other words 
 
if   p p pu u F k u                                           (8a) 

if   maxp p p p pu u F k u F                              (8b) 
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Figure 2: Behaviour of elastoplastic material: (a)  hysteresis loop and 
(b) elastoplastic material model. 

 

2.3 Formulation of viscoelastic material 

Viscoelastic behaviour is modelled by using a Maxwell model composed of a 
dashpot and a linear spring that are defined by the relaxation time parameter  
and spring stiffness kv. 
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Figure 3: Components of the viscoelastic parameter. 

     Relaxation time parameter  is defined as 
Vk

   and the strain/displacement 

relationship at each load and unload step is: 
 
a) Initial load branch 
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b) Unload branch 
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where the first value of Fv,k is obtained at u = umax 
 
 
 
 
 

FF 
kV

FP 

u

uPu-uP

F 

 WIT Transactions on Modelling and Simulation, Vol 59,
 www.witpress.com, ISSN 1743-355X (on-line) 

© 2015 WIT Press

272  Computational Methods and Experimental Measurements XVII



c) Reload branch 
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where the first value of Fv,k is obtained at u = umin 
 

     The complete cycle of initial load, unload and reload will produce a graph as 
shown in figure 4(a). After carrying out a new reload phase the final force is 
different from the one in the previous cycle as presented in figure 4(b). The same 
situation occurs in the forthcoming cycles. This behavior keeps on but in a 
attenuating way and finally, usually after about ten cycles although this number 
is problem dependent, a closed loop can be assumed as shown in figure 4(c). 
 

   
                (a)                                      (b)                                          (c) 

Figure 4: Evolution of the F(u) curve: (a) initial cycle; (b) second unload 
cycle; (c) final hysteresis loop. 

 

3 Application example 

The formulation presented was applied to a set of experimental date of a class of 
elastomeric material used in aircraft structures. The objective of the study was to 
identify a proper combination of different constitutive equations that could set 
the hysteretic load shape. Two different strategies were carried out: 
 
- Combination of hyperelastic and elastoplastic materials. 
- Combination of hyperelastic, elastoplastic and viscoelastic materials. 
 
     In both cases the problem was solved by formulating an optimization problem 
defining an objective function F which was an error metric consisting in the 
squares of the differences between values of the experimental curve FE(ui) and 
the numerical one FN (ui). Namely 
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being N the number of points considered on the hysteresis loop. 
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                                 (a)                                                              (b) 
 

Figure 5: Hysteretic loop and materials considered in the study: (a) hysteretic 
loop; (b) scheme of material used. 

     Design values were composed by the coefficients of the Yeoh model, the 
value of the sliding displacement up and stiffness kp of the elastoplastic elements 
and the stiffness kV and the relaxation time parameter  of viscoelastic material. 

3.1 Fitting with hyperelastic and elastoplastic elements 

In this approach a combination of a hyperelastic element and three or six 
elastoplastic element were worked out. The idea of using different number  
of elastoplastic materials was to observe if this variation influenced the accuracy 
of the results at the end of the optimization problem. Different coefficients for 
compressive and tensile forces were used in the Yeoh model, so for the case of 
three elastoplastic materials the number of design variables was 12 and this 
figure increased up to 18 for the case with six elastoplastic materials. For the 
former case the numerical results obtained appear in Tables 1 and 2. 
 

Table 1:  Coefficients of the Yeoh model. 

 1 2 3 
CYT 250.212675 145234.241 75699.3924 
CYC -414.679047 35389.3483 347426.707

 

 

Table 2:  Coefficients of the elastoplastic materials. 

 1 2 3 
up 0.02624775 0.84241707 1.05597988 
kp 12625.7817 2678.44495 4919.28876

 

 
     Figure 6 shows in red and green colour the contributions of hyperelastic and 
elastoplastic elements. By adding both responses a hysteretic loop that fits 
perfectly the experimental data is obtained. 

Hyperelastic materials 

Viscoelastic materials 

Elastoplastic materials 

 WIT Transactions on Modelling and Simulation, Vol 59,
 www.witpress.com, ISSN 1743-355X (on-line) 

© 2015 WIT Press

274  Computational Methods and Experimental Measurements XVII



 

Figure 6: Fitting with a hyperelastic element and three elastoplastic elements. 

 
     When up to six elastoplastic elements were included the numerical values of 
the design variable at the end of the problem were the following. 

Table 3:  Coefficients of the Yeoh model. 

 1 2 3 
CYT 1290.92693 127450.542 320694.448 
CYC 131.56443 33472.7572 354241.481 

   

Table 4:  Coefficient of the elastoplastic materials. 

 1 2 3 4 5 6 
up 0.00088092 0.74238013 1.06862969 0.05784354 0.92986345 0.95679066 
kp 219802.129 1139.9616 3752.92474 3250.38887 1236.36409 1148.69971 

   
     Similarly to the previous formulation the individual contributions of each 
class of material and the combined values are presented in Figure 7 and again the 
experimental data are very much fitted. 

 

Figure 7: Fitting with a hyperelastic element and six elastoplastic materials. 
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3.2 Study considering hyperelastic, elastoplastic and viscoelastic elements 

As mentioned before, another study considering also viscoelastic material and 
thus, taking into account up to three different constitutive equations was carried 
out. Namely, the configurations analyzed were 
 
- A hyperelastic element, a viscoelastic element and three elastoplastic elements. 
- A hyperelastic element, a viscoelastic element and six elastoplastic elements. 
 
Therefore, the first case led to an optimization problem with 14 design variables 
while the number of design variables was 20 in the second one. The numerical 
values obtained in the study with three elastoplastic variables are presented in the 
following tables. 

Table 5:  Coefficients of the Yeoh model. 

 1 2 3 
CYT 14611.6962 92915.7921 -656524.346
CYC 9437.40184 17141.8514 54277.3558

   

Table 6:  Coefficients of elastoplastic materials.  

 1 2 3 
uP 0 1.06862969 0.22986546 
kP 488.76247 805.581576 1331.85889

   
The values of the parameters of the viscoelastic material turn out  
 

 = 0.1522784   kV = 7417.8974 
 
     In Figure 8 the contribution of each class of material is presented using the 
same colours as in the previous paragraph. It can be observed that the 
experimental data are very accurately reproduced. 
 

 

Figure 8: Fitting using a hyperelastic and viscoelastic element and 3 
elastoplastic elements. 
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     Finally, a study increasing up to six elastoplastic elements was carried out. 
The numerical values for the viscoelastic material were 
 

 = 0.11954619   kV = 6452.33768 
 

     Values of coefficients of the remaining types of materials are presented in the 
following tables. 

Table 7:  Coefficients of the Yeoh model.  

 1 2 3 
CYT 14610.9185 92915.7921 -656524.346
CYC 9437.40184 17141.8514 54277.3558

 
 

Table 8:  Coefficients of elastoplastic materials.  

 1 2 3 4 5 6 

kP 0.20753566 0 0.26664412 1.06862969 0.14596869 0.30561166 

kP 389.959727 718.412669 703.194874 821.455335 1568.759 687.826133 

 
     In figure 9 the individual contributions and the combined values are presented 
showing a perfect matching of the experimental data. 

 

 

Figure 9: Fitting with a hyperelastic and viscoelastic element and 6 
elastoplastic elements. 

4 Conclusions 

The following expressions can be drawn from this work: 
 

1) Elastomers are a crucial component in aircraft structures and proper 
identification of their mechanical properties is very much needed for 
accurate modeling in finite element structural models. 

2) Efficient modeling of elastomeric materials requires a combination of 
several nonlinear behaviour as hyperelasticity, elastoplasticity and 
viscoelasticity. 
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3) A formulation for combining such constitutive equations in order to 
model the type of elastomers used in aircraft industry has been worked 
out.  

4) An application example using data very similar to experiments of real 
material has been used to prove the capability of the method and the 
numerical values led to a perfect fitting of the shape of the hysteretic 
loop considered. 
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