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Abstract 

The paper deals with the stochastic collocation analysis of a time domain 
response of a straight thin wire scatterer buried in a lossy half-space. The wire is 
excited by a plane wave transmitted through the air-ground interface. Transient 
current induced at the centre of the wire, governed by corresponding Pocklington 
integro-differential equation is determined. This configuration, as is the case 
with many electromagnetic compatibility (EMC) issues, suffers from 
uncertainties in various parameters, such as ground properties, wire dimensions, 
position, etc. The obtained results yield additional statistical information thus 
enabling more accurate and efficient analysis of buried wire configurations. 
Keywords: buried thin wire, analytical solution, Lossy half-space, stochastic 
collocation technique. 

1 Introduction 

There has been a continuous interest in the analysis of ground penetrating radar 
(GPR) systems and related applications in civil engineering [1]. Consequently, a 
deeper insight of scattering phenomena occurring in a lossy half-space, as well as 
the development of uncertainty analysis is required [2, 3], This paper deals with 
the analysis of random variations regarding geometries, environment and/or 
materials of interest that may lead to substantial misunderstanding or errors in 
the analysis of buried objects. Due to uncertain variations of parameters of 
interest, (e.g. inability to obtain precise input parameters or environmental drifts 
caused by ground humidity) some techniques for an efficient integration of 
stochastic modelling have been developed [4]. This paper underlines the 
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advantages of stochastic collocation (SC) method and aims to demonstrate the 
ability of a precise and analytical deterministic method to compute the current 
induced on a straight buried wire, combined with an efficient and accurate 
stochastic method (SC) to integrate uncertainties surrounding parameters 
accuracy. 

2 Antenna theory formulation and analytical solution 

A horizontal thin wire scatterer of length L and radius a, is buried in a lossy 
medium at depth d. Properties of the medium are given with ε and σ, i.e. 
electrical permittivity and conductivity, respectively. The wire is illuminated by 
a transmitted part of a transient electromagnetic (EM) wave of normal incidence 
(as shown in Fig. 1). 
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Figure 1: A horizontal thin wire buried in a lossy medium. 

     Time domain formulation for the transient analysis of horizontal straight wire 
buried in a lossy medium is based on the space-time Pocklington integro-
differential equation given with [5] 
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is the unknown space-time dependent current, tr
xE  is the 

tangential transmitted field and MIT
ref  is the corresponding reflection coefficient 

arising from the Modified Image Theory (MIT) [6]. 
     The distance from the source point in the wire axis to the observation point 
located on the wire surface is 

  2 2'R x x a   , (2) 

while, the distance from the source point on the image wire to the observation 
point on the original wire, according to the image theory is 
 

  2 2' 4R x x d    . (3) 

Time constant and propagation velocity in the lossy medium are given by 
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The influence of the earth-air interface is taken into account via the reflection 
coefficient arising from the MIT and is given with [5] 
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where the corresponding time constants are 
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 (6) 

Note that the reflection coefficient (5) represents rather simple characterization 
of the earth-air interface, taking into account only medium properties. An 
accuracy of (5) has been discussed in [5] and [7]. 
     Undertaking the analytical solution procedure documented in [7], the 
expression for the time dependent induced current for the case of impulse 
excitation can be written as follows 
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where coefficients  R s  and s  represent physical properties of the system, 

taking into account the dimensions of the wire and the distance from the 
interface: 

 

 
1

1 2
2 2

1 2

1
,

1
2ln

2 1 1

ln ln
2

ln ln
2

R s
s sL

d s s

L L

a ds
L L

a d

 
 

 


 

 




 

   


 


. 

(8) 

     Furthermore, other coefficients in (7) correspond to the properties of the 
medium and are given as follows: 
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(9) 

     Expression (7) represents the impulse response. Consequently, the response to 
an arbitrary excitation requires convolution. In this paper, the normal incidence 
is considered, i.e. the plane wave in the form of the double exponential function 
is assumed 

    0
t t

xE t E e e    . (10) 

     The transmitted electric field exciting the buried wire in the Laplace domain 
is given by [8] 
      tr d

x tr xE s s E s e    (11) 

where  tr s  represents Fresnel transmission coefficient defined by relation [7] 
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As the convolution, i.e. the time domain counterpart of (11), would be too 
complex to be calculated analytically, the numerical convolution is carried out, 
as it is presented in [7]. 

3 Statistical and stochastic strategies 

Among the huge diversity of statistical approaches available in the literature, the 
purpose of this paper is to focus on spectral stochastic techniques [9]. Relying on 
the physical problem under consideration, the statistics of the current I induced 
in the centre of the buried wire ([I]u, where u represents a given order of 
statistical moment) is expanded over an adapted function basis (  u X

depending on statistical order u) as follows: 
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where 1 Nv v
w
  stand for the weights of the expansion for random vector X of size 

N (X=(X1,X2,…,XN)T thus modelling the N random components or parameters of 
the problem). Relation (13) involves the necessity for nw+1 SC points (SC nw 
order expansion) to compute random component Xw in a straightforward manner. 
Some more details related to this approach are available in [10]. 

3.1 Multiple independent random variables principle 

The fundamentals of SC technique [10] applied to the buried wire configuration 
taking into account three Random Variables (3-RVs), are outlined. The principle 
through which one operates with a random output I (current) depending on 
random parameters (ground conductivity σ in mS/m, wire length L and depth d in 
m) is illustrated. As depicted in (13), the SC technique is compatible with higher 
RV dimensions. The problem of interest requires one to model 3-RVs û1, û2 and 
û3 (randomly modelled physical parameters) respectively X1, X2 and X3. The 
random variations related to independent X1, X2 and X3 may be defined from 
the initial values 0

1X , 0
2X  and 0

3X . Applying the same strategy as documented 

in [10], function     0 0 0
1 2 3, , , , ; , ,r s t I X X X r s t  is projected on a Lagrangian 

basis 
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where    0 0 0 0 0 0
1 2 3 1 2 3, , , , ; , ,ijk i j kI X X X I X X X r s t , ri, sj and tk are the SC points 

required in a corresponding random direction (i.e. accordingly to X1, X2 and X3 
parameters). 
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3.2 Computation of SC statistical moments: advantages and drawbacks 

As previously stated, the computation of output I statistics from (14) through a 
tensor product in each direction (i.e., for each RV) is rather simple. The SC 
technique gives the collocation sets of weighted points necessary to compute the 
needed statistics (e.g. mean and standard deviation). However, the technique also 
requires a particular attention regarding the cost/benefit ratio when increasing X 
dimensions (tensor product of RV). Some methods for the improvement of 
stochastic techniques have been presented in [11] and [12]. The part to follow 
proposes an alternative strategy to iteratively (i.e. increasing one RV at a time) 
and completely construct a random model. 

4 Numerical results from an iterative construction of the 
random model 

This section deals with some numerical results and statistics considering the 
current at the centre of the wire buried in a lossy ground. The entire stochastic 
modelling is based upon realistic values of: 
- soil conductivity : 0 0

1̂u    with 0 0
1 5mS mX    and 0

1̂u  a zero-

mean RV with a uniform distribution from 1 to 9 mS/m; 
- length L of wire: 0 0

2ˆL L u   with 0 0
2 10mL X   and 0

2û  a zero-mean RV 

with a uniform distribution from 9.5 to 10.5 m; 
- burial depth d: 0 0

3ˆd d u   with 0 0
3 4md X   and 0

3û  a zero-mean RV 

with a uniform distribution from 2.5 to 5.5 m. 
Without loss of generality, the problem can be addressed following different 
assumptions about the statistical distribution laws. 

4.1 Numerical results with one random variable 

In a first step, the mean value and variances including only one RV, soil 
conductivity, length of the wire or burying depth (RV1, RV2 and RV3, 
respectively)  can  be  readily  computed  from (14). Figs 2, 3 and 4 show the  
deterministic and stochastic results obtained for the transient current at the centre 
of the buried wire. Although it is expected that soil conductivity is a crucial 
parameter, the results from Figs 2, 3 and 4 reinforce statistically this analysis. 
As shown in Figs  2, 3 and 4, the deterministic value of the mean transient 
current somewhat differs from the stochastic one. The average current I  and 

its statistical dispersion  I std I  are given in Figs  2,  3 and 4 and differences 

can be observed between their respective variances (i.e. standard deviations). In a 
first step, this may offer a quick glance on the sensitivity of the three parameters 
to uncertain variations. The SC convergence is obtained with a limited number of 
points in each case: 
- 7 points are required including only soil conductivity (Fig. 2); 
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- 7 points may be  sufficient  to  compute  properly  mean and variance of  the 
burial depth (Fig. 4). 

 

Figure 2: Current at the centre of the wire relying on RV1 (). 

 

Figure 3: Current at the centre of the wire relying on RV2 (L). 

4.1.1 Variance convergence in relation to system sensitivity 
This part focuses on the SC requirements for variance convergence to improve 
the knowledge of the model sensitivity regarding each parameter independently. 
However, the interactions between RVs are not taken into account, but a view of 
the SC convergence and an idea of the RV global sensitivity are given. 
     First, it is compulsory to ensure the number of SC points necessary to assess 
convergence by computing statistics of the current. Based upon criterion 
proposed in [10], the SC convergence from SC method with sw weighted points 
for RV number w is given by 

- 3 points are necessary considering only the length of the wire (Fig. 3); 
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  (15) 

where  is the u-th order statistical moment computed from SC.  

 

 

Figure 4: Current at the centre of the wire relying on RV3 (d). 

     Figure 5 shows the results obtained by applying relation (15) for RV1, RV2 
and RV3. As expected, fewer points are expected to ensure high convergence 
rate for RV2 (L) than for RV1 () and RV3 (d). 
 

 

Figure 5: Relative gap (variance of the current) while increasing SC orders for 
1-RV stochastic models. 

     Figure 6 emphasizes the importance of RV1 over other RVs: the relative 
dispersion from soil conductivity is larger than the one given by the length of the 
wire. An intermediate level is expected from RV2 (burial depth). Figure 6 gives 
a quick overview of the 1-RV model sensitivity throughout the simulation time. 
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Figure 6: Variances of current computed from different stochastic modelling. 

4.2 Numerical results for entire random model 

This section deals with the numerical results obtained from the stochastic model 
including three selected random parameters. 

4.2.1 Fully tensorized modelling 
Figure 7 shows mean (+ one standard deviation) of the current at the centre of 
the wire under uncertain constraints fully tensorized (i.e. with 3 RVs). First, the 
similarity with results depicted in Fig. 2 is noteworthy (emphasizing the 
importance of RV1). The main difficulty relies on the number of samples needed 
to assess converged statistics: 33+53+73+93=1224 points are required to ensure 
the asymmetrical convergence of 6-th order (i.e. 7 points for each RV). 
 

 

Figure 7: Currents at the centre of the wire (“full-tensor” model). 
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     The sensitivity analysis provides relevant information needed to decrease the 
total number of SC points required for each RV and optimise the “full tensor” 
random model to an “asymmetrical” one. 

4.2.2 3-RV full tensor optimization (asymmetrical SC) 
Figure 8 provides convergence rates from the current variance including a 
complete random model: only 5 points are necessary to precisely describe the 
influence of random burying depth d (RV3). Nearly zero levels of the current 
(mean and variance) below 0.03 s involve instability of the convergence 
criterion (and positive SC gaps). Finally, Fig. 9 shows a good agreement between 
fully tensorized statistics of the current obtained with 343 points and the results 
given with 105 following previously depicted strategy. 
 

 

Figure 8: Relative gap with increasing SC orders (RV3). 

 

Figure 9: Current from fully tensorized SC (73 pts) and asymmetrical number 
of points (σ: 7, L: 3, d: 5). 
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5 Conclusion 

The coupling of deterministic time domain analytical solutions of the 
Pocklington integro-differential equation with stochastic collocation technique 
provides crucial information for the calculation of the response of wire 
configurations buried in lossy ground. The robustness, accuracy and convergence 
of the two techniques (deterministic and stochastic) ensure useful statistics for 
designing GPR systems by taking into account their intrinsic random 
characteristics (variations due to material parameters). Future work will be 
devoted to the analysis of benefit of the use of the space-time Pocklington 
equation coupled with proposed stochastic strategy in comparison with other 
costly sampling methods such as Monte Carlo. 
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