
Composite model of a hematopoietic system 
with clone competition 

M. Rusinov1,2, S. Kulikov2 & L. Uvarova1 
1Moscow State Technological University “Stankin”, Moscow, Russia 
2National Centre for Hematology, Moscow, Russia 

Abstract 

This paper is dedicated to the development of a human hematopoietic system 
model, its identification and investigation of the roles of polyclonal and complex 
feedback in defining the behaviour of the system. The main purpose of the model 
framing is the study of the interaction and the possible pathogenetic role of 
simultaneously coexisting distinct lines of blood, which develop in parallel. The 
article proposes a classification system for human hematogenesis models based 
on following a key principle: the method of describing the age structure of cell 
population. Based on the analysis of said classification certain system features, 
which have not been considered previously, stand out. To take them into 
account, we propose a model based on the McKendrick–von Foerster equation. 
This paper describes the features and limitations of this model and discusses 
further development of the model 
Keywords: mathematical model, hematopoietic system, stem cell, hematopoiesis. 

1 Introduction 

Due to the nature of their functioning, blood cells are subjected to constant 
physiological destruction, which makes the hematopoietic system one of the 
most dynamic systems. Constant change of the internal and external conditions 
requires large variability of the system and high efficiency of directional change 
in the production of blood cells. 
     Due to the complexity of the regulation of the hematopoiesis even small 
changes in the behaviour of individual cells can switch the system to other 
operational modes. 
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     The fact that many blood diseases are rare suggests that subtle mechanisms 
are required in order to understand their causes. Heuristic arguments without 
applying mathematical apparatus of the system study might fail to provide the 
explanation of the pathogenesis and therapeutic ways of returning the system to a 
normal functioning condition. 
     The two main principles determining the architecture of the hematopoietic 
system are the presence of a regulatory feedback and the change in the cell 
behaviour depending on their degree of differentiation. If we analyze the 
currently existing mathematical models of hematopoiesis based on the method of 
describing the age structure of the cell population (MDASCP), we can classify 
them as follows: 

1. Models with discrete MDASCP: major classes of cells are selected 
from the population structure, and for each class a law of change 
and transition to a related class is stated [1, 2]. 

2. Models with continuous MDASCP: population structure is seen as 
a continual sequence of maturing cells. This approach provides two 
principles for further study: 

a. Models with discretized MDASCP: the sequence is divided into 
any number of age compartments, usually into several dozens, and 
consistent equations are, fairly accurately describing the structure 
of transitions from one stage of cell development to another, are 
developed for them. In this case, the system may include several 
macro-classes, in which the transitions between the classes are 
organized differently [3]. 

b. Models with continuous MDASCP: age structure of the population 
is described by a certain continuous equation [4–8]. 

2 The model 

The analysis of present-day knowledge about the hematopoietic system 
physiology shows that models described above do not take into account the 
following features of the human hemopoietic system: 
 

1. The presence of two main opposing principles of production 
adjustment: 

a. By regulating the rate of proliferation; 
b. By regulating the rate of differentiation; 

2. Polyclonality; 
3. The behaviour of the hematopoietic system as a cell population. 
 

     To construct the dynamics of change in the cell population it appears 
reasonable to apply an approach of modeling with continuous description of the 
structure of age distribution in the population. Such a model would consist of 
integrodifferential equations and can be studied analytically. 
     We divide the population of blood cells into two blocks fundamentally 
distinguishable from one another by the nature of behaviour and by a non-trivial 
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interaction between them: one block for maturing cells in the bone marrow (BM) 
and the other for mature cells in the peripheral blood (PB). The block with 
mature cells influences the dynamics of the maturation of the cells from the 
block of maturing cells. Transition of the cells from one block to another is 
random. In addition, the block of maturing cells is also divided into two blocks: 
block of maturing cells, which under normal circumstances do not go into the 
peripheral blood, and block of mature cells in BM, which gradually diffuse 
through the bone tissue into the bloodstream. The transition from the block of 
maturing cells to a block of mature cells in the BM occurs after a certain degree 
of differentiation. The transition from the block of mature cells in the BM to the 
block of mature cells in the PB is uniform. The probability of death of mature 
cells increases with their age. The total number of mature cells influences the 
regulatory factor (RF) levels of the feedback. 

 

Figure 1: Schema of the model with a continuous description of the age 
structure of the cell population. 

     The most plausible description of the population structure of each block can 
be obtained by using McKendrick–von Foerster equation. This equation is a 
partial differential equation with two variables: time and differentiation degree of 
the cells (their relative age), which describes changes in population structure. 
The left side of the equation contains terms that describe changes in population 
structure, and the right side contains terms that describe population growth and 
decrease. For each block a relative cell age is introduced and the global time is 
implemented. 
     For each block we must determine the right side of the equation, depending 
on the laws of change of the population structure: 
1. For the block of dividing and developing cells: 

     exp0
β

p p μ
+V D = β μ,P p = s P p

t μ k

  
     

 (1) 

where p(t, μ) is the maturing cells population density; V(D) is the factor 
responsible for the rate of cell differentiation, which depends on the level of the 
differentiation regulation factor (DRF) D(t); β(μ, p) is the coefficient of cell 
proliferation rate, which depends on their maturity and the level of the 
proliferation regulation factor (PRF) P(t). 
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     As the differentiation continues, the cells lose their proliferative potential. It 
is marked by the acquisition of specific morphological traits. 
For this relation the following function is suggested: 
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where s0 is the proliferative potential of the cell that has entered the path of the 
development (right after the “stem”); P is the level of PRF; kβ is a scale factor. 
     The rate of the cell division depends on the concentration of DRF D(t) and on 
its enzyme kinetics, which are implemented according to the Michaelis - Manton 
equation: 

  
max

m

V D
V D =

D+ K
 (3) 

where Vmax is the top speed of maturation; Km is the Michaelis constant, 
correspondent to the enzyme concentration at which the rate of the cell 
maturation equals half of the maximum. 
     The initial condition for the eq. (1) is a constant number of stem cells p(t,0) = 
S0. 

     At maturity level μ  cells lose their ability to divide, but continue to mature in 
the bone marrow and other hematopoietic organs. In our model, we represent it 
by gluing the boundary conditions of the 1st block (right) and the 2nd (left). 

    ,0l t = p t,  (4) 

2. For the block of mature cells in bone marrow: 

        
H

V Dl l
+V D =V D H η l = l

t η λ

 


 
 (5) 

where l(t, μ) is the mature cells population density; V(D) is the factor responsible 
for the rate of cell differentiation, which depends on DRF D(t); H(μ) is the 
function of the cell transition rate in peripheral blood. 
     In the time of transition from the first block to the second the cells acquire the 
potential to pass into the peripheral blood. Such processes are described by the 
Weibull distribution: the conditional probability of a cell passing into the 
peripheral blood, provided that by current age it has not gone there yet, that is, 
the risk function. The probability of passing for each cell is independent of its 
age, kH = 1, hence, 

  
1

1
kH

H

H H H

k η
H η = =

λ λ λ


 
 
 

 (6) 

     The function l(t, η) is defined on a semi-infinite axis 0 η<   
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3. For the block of mature cells in peripheral blood: 

  
1kγ

γ

γ γ

km m ν
+W = γ ν =

t ν λ λ


  

       
 (7) 

where m(t, ν) is the population density of the mature cells in the peripheral 
blood, which are gradually removed from the circulation; W is the rate of 
“aging” of the cells; γ is the rate of cell death. 
     We assume that the probability of cell death increases with age linearly due to 
the impossibility of regeneration. Then γ is described by the Weibull distribution 
with kγ > 1. 
     The size of the cell inflow to the third block should equal the flow of cells 
leaving the second block; it equals the age integral of the product of risk function 
by population structure function. 

         
0 0

1
0

H

m ν= = l t,η H η dη= l t,η dη
λ

 

   (8) 

     The system of quantity regulation maintains a constant number of mature 
cells. 

    
0

νF

M t = m t,ν dν  (9) 

     The total number of mature cells is calculated by their task performance, that 
is, by their efficiency. 
     Since RFs are proteins, they are produced and decomposed with time 
according to the first order kinetics, and if their growth is dependent on the 
number of mature cells, their decay rate is constant. 

   12
E E

dE
= f M K E

dt
  (10) 

where E is one of the RFs, P or D,  Ef M  is the E production rate, 12
EK  is the 

half-life period. 
     The production of RFs is carried out by special cells, and according to the 
principles of feedback RFs are produced during cell shortages and stop being 
produced in the conditions of overabundance. 

  
max

E mE
E
f

E
f M =

M
+k

q

 
 
 

 (11) 

where M(t) is the number of mature cells; Emax is the maximum rate of increase 
of the RF percentage; mE is the Hill coefficient, in this case it reflects the 
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severity of the reaction to the deviation from the norm; q is a scale factor, a shift 
in the normal level to the inflection point of the kinetic function; kf

E is the 
smoothing coefficient. 
     Present-day ideas about the physiology of hematopoiesis postulate the 
existence of a polyclonal hematopoiesis, thus stating the heterogeneity of the 
population, the presence of a subpopulation with dynamic parameters differing 
from the main one. Also, the descendants of different cells, identical in their 
characteristics, can be attributed to the main population. 
     In general, any of the dynamic parameters of the cell can be changed. If we 
assume that there is only one changed subpopulation competing with the main, it 
is advisable to monitor the fate of the cells of both populations. For both 
hematopoietic lines the equations remain identical up to the values of the 
coefficients. RF kinetics of the feedback in a polyclonal model does not change 
in comparison with the model of a homogeneous population. Changes apply only 
to the formula for M, which calculates the total number of mature cells in the 
peripheral blood. 
     The total number of mature cells is calculated by their task performance, that 
is, by their efficiency, which may be different for different lines, so we introduce 
the coefficient of efficiency ratio Ω. 

           1 2 1 2

0 0 0

,
ν ν νF F F

M t = m t,ν dν+Ω m t dν m t,ν +Ω m t,ν dν     (12)  

     However, there is a certain shared resource (food, space etc.) that restricts 
their joint growth and provides mutual oppression. 

3 The stationary solution 

The resulting model is analytically solved only if V(t) = const. This case 
corresponds to a situation where the feedback is not activated, i.e. it is the case of 
a normal system functioning. The equations of the model are then divided into 
several independent quasi-linear first order partial differential equations, each of 
which can be solved by the method of characteristics. As a result, we obtain the 
structure of the cell population in a situation of normal hematopoiesis. These 
equations can be used to set the initial conditions for the numerical calculation. 
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     In addition, on the basis of some a priori reasons several settings that are 
difficult to formalize can be excluded. 
     First we need to understand the kinetics of the feedback factors eq. 11. 
Feedback functioning should lead to the regulation of the blood cell production 
in a way that would maintain a constant number of mature functioning cells in 
the blood. Thus, the macro-argument which specifies the whole behavior of the 

74  Computational Methods and Experimental Measurements XVI

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 55, © 2013 WIT Press



hematopoietic system, but is not actually presented in the model, is the normal 

number of cells in the peripheral blood M . 
     The kinetics function of the feedback factors must have such properties that if 
the value of the cell number in the peripheral blood is normal, the factor will 
maintain the average value, while a deviation from the normal value will cause a 
drastic change in the factor production, although a strong deviation will 
eventually cause saturation, i.e. an asymptotic approach of the production rate to 
the maximum possible value on one side and to zero on the other. 

     All this is achieved by the accordance of the M  value with the function 
inflection point eq. (11) and the concordance of Emax with KE

1/2 
Unlike many other parameters, KE

1/2, which is the half-life period of the factor, 
can be found directly. A maximum rate of the factor production must be obtained 
indirectly. 
     To obtain normal values of the factors it is necessary to regard the obtained 
solution of the stationary problem 

4 Numerical study 

Numerical study has confirmed the presence of limit cycles, as well as damped 
oscillatory solutions corresponding to the state of blood loss. 

 

Figure 2: Numerical solution. Blood production is repaired after a massive 
blood loss. X-axes (reverse) represent the maturity level of cells; Y-
axes represent the time; Z-axes represent the number of cells. 

5 Simulation part 

Proposed approach, however, does not allow to fully trace the events occurring, 
firstly, in the early stages of differentiation, where the behavior can not be 
described by the “average” behaviour, and, secondly, in “rare” events, such as 
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neoplasms of various origins. Rare events in differential models end up outside 
of the error limits. 
     When considering additional systems of equations (as suggested above), we 
face the problem of scale differences in the initial period, as well as, more 
importantly, the impossibility to investigate the likelihood of development or 
elimination of the arising mutant clones. In turn, the lack of dynamic equations 
for further development of the cells does not provide a plausible picture. The 
feedback in this case makes a significant contribution to the development of the 
disease. 
     To model the dynamics of the early stages of hematopoiesis we suggest the 
use of the Moran model [3, 9]. Moran model is a model with event transition. 
We believe that the events occurrence is relatively uniform over time, and at no 
point in time do two simultaneous events occur. It is always possible to find the 
average time between events. In this case, that period τ is inversely proportional 
to the volume of the given population and is directly proportional to the average 
time of single cell events. We will consider division, apoptosis and 
differentiation as such events. We will look at the first few compartments. 
Starting with a certain maturity level T (determined based on the volume of the 
compartment) the events can be considered as deterministic and we can calculate 
them in our models “averagely” using the differential equations. For the changed 
clone the probability of events is different from the general population, which by 
assumption is the cause of neoplasia. 
     A similar approach is used in [3], but in this study the effect of the feedback 
is not considered, although it turns out to be essential, since it has an enhancing 
effect. The resulting estimates may be too low. 
Time τ between events defines the model time for further calculations and 
subsequent compartments. 
     To obtain a full calculation model it is necessary to add the equation of 
displacement into the continuous model. The reaching of the saturation limit can 
be conventionally considered a sigmoidal function. 

6 Conclusions 

Therefore, we have a combined model where the estimates for the early stages of 
cell development are carried out basing on Moran law, i.e. individually for each 
cell, which allows us to assess general probability of pathological process 
appearing and their development into a disease. And vice versa the solution for a 
reverse population problem, when we can determine the probability of 
pathological cell emergence knowing the frequency of pathologies in a cell 
population. At the same time this phenomenon is non-linear. At the top levels of 
the system an analytical system is used, which investigates the behaviour of the 
system on average. The methodology of this approach is viable as it the feedback 
regulation factors are evenly distributed among hematopoetic organs, and the 
events involving stem cells are discrete. We view such description of the system 
as the most credible and complete. 
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     Analytical solutions available allow us to divide the areas, where trajectories 
of numerical solutions come, into classes of solutions. This provides an 
opportunity to select the correct strategy of numerical analysis, in particular it 
will allow us not to consider impossible trajectories or those falling into the 
infeasible regions. 
     The model may serve as a basis for the analysis using Mote-Carlo method as 
well as for prediction of responses to various therapeutic interventions (treatment 
protocols) or exposure to medicine.  
     The model can be further complemented with detailed mechanisms of enzyme 
kinetics for feedback regulation factors, while Moran model may be replaced 
with a special model which will allow us to take the interaction between stem 
cells and microstroma into account. 
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