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Abstract 

A method of signal synthesis is presented. After theoretical introduction an 
algorithm of frequency modulated (FM) signal synthesis is presented. Simulation 
results made in Matlab are presented in the last chapter. 
Keywords: NLFM, signal synthesis, autocorrelation function. 

1 Introduction 

This paper presents the problem of the synthesis of signals modulated in 
frequency with an autocorrelation function that implements an optimal 
approximation to a given autocorrelation function. 
     The output signal of the matched filter is proportional to the autocorrelation 
function of the expected signal. Because of that one would want to use a signal 
whose autocorrelation function  R  would be “similar” to certain “perfect” 

 optR  in the sense of a criterion that would provide a desirable property or 

properties. In this case it is the square criterion of similarity 

     




 dRRf opt

2
. (1) 

     In addition we are assuming, that the energy spectrum of the signal  ts , 

    for0G  (2) 

is non zero in a finite range of frequencies. 
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     Realized autocorrelation function does not determine in explicit way signal 
 ts , it can only determine the signals amplitude spectrum: 

     


 




deGR j2

2

1
,
 (3) 

    




  deRG j2
, (4) 

where  G - amplitude spectrum. 

     From the above one can see that any signal with a given amplitude spectrum 
and a random phase spectrum can have the desired autocorrelation function. In 
the next paragraph the signal synthesis algorithm will be presented. 

2 Signal synthesis algorithm 

The signals synthesis task is to determine a signal x , that is an element of a set 
of frequency modulated signals X, on the basis of the set of signals Y with 
desired a property or properties of the autocorrelation function. In other words 
one should synthesize a signal  txopt , which is closest to the signal  tyopt  in 

the meaning of the square criterion. The synthesis of the optimum signal  txopt  

is equivalent to the determination of the shortest distance  yxd , , in the sense of 

the square criterion, between the X and Y sets 

  yxdd
Xx

,minmin


 . (5) 

     The square criterion specifies a rule according to which to each pair of 
functions x  and y  distance  yxd ,  is assigned to each other. The distance 

 yxd ,  is often called a function space metric and should not be interpreted as 

the geometric distance. Signals belonging to this space are governed in terms of 
energy as mentioned earlier.  
     There are several ways to solve the problem of the signal synthesis i.e., 
finding a signal x  with lowest value of distance  yxd , . The problem was 

divided into two parts. The first part (first three blocks in fig. 1) was carried out 
only once during the initial stage of the algorithm and its purpose was to find the 
form of equation (iv) from fig. 1. The second part of the signal synthesis problem 
was solved, by building two separate algorithms (last two blocks in fig. 1) 
executed consecutively. In the first algorithm one chooses a facultative signal 
xX and determines its best approximation on Y set of signals, [1, 2] (main 
program from fig. 1). 
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      tBax ,,0 

Quality criterion of optx  signal approximation 

 
    min

2

 




dttRtRd
optxy

   

Otherwise, maximalization of similarity coefficient 

       max
2

1
, 


 





dbaYxC x
 (i) 

where: 

       



2

2

T

T

ttj
x dtetBb

 (ii) 

Similarity criterion (iii) reaches maximum for 

     cc dadttB 


 22

2

1  (iv) 

This equation determines the optimal frequency modulation 
function of synthesized signal  tx opt  

Main program
Determination of zero approximation signal. 

Iterative program
Increasing the accuracy of the result 

Substituting the solution of (ii) to (i) one obtains 

      
 

max
2

1
,

0

0 
 




  d
t

tB
aYxC

c

  (iii) 

STOP 

START 

 

Figure 1: Signal synthesis algorithm. 

     The quality of approximation is characterized by a distance expressed by the 
following 

   yxYxd , , (6) 

where   denotes the norm of the signal. 
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     This distance corresponds to a specific signal 0y  

   xjeay 0
0

 . (7) 

     If the signal does not have the desired properties, the signal x  is changed 
(moving inside X  set), and the distance  yxd ,  is determined again, this task is 

carried out by iterative program from fig. 1. Successive distance values should 
form a decreasing sequence 

 321 ddd . 

     This operation is repeated until the minimum of eqn (6) is achieved. Both 
algorithms were implemented in Matlab using numerical methods. 
     The task of the signal synthesis is to synthesize the frequency modulation 
function  tωc  that implements the best approximation to the desired signal 

 ty . Suppose that the elements of the set of possible signals X are given as 

      tjetBtx   for  
2
Tt  , (8) 

where: T  – duration of the pulse,  tB – signal envelope,  t – phase 

modulation function. 
     The spectrum of the signal  tx  is given by 

       x
x

j
ebX

~
, (9) 

where:  xb  – amplitude spectrum,  x – phase spectrum. 

     In the process of the synthesis, it is assumed that the envelope of the signal 
(  tB ) is set, and the function  t  is arbitrary. The frequency modulation 

function is expressed as follows 

    
dt

td
tc


  (10) 

     Elements of Y have the following form 

      tjetAty  , (11) 

and their spectra 

       jeay~ , (12) 

where: 
 tA  - envelope of the signal  ty , 

 t  - phase function of the signal  ty , 

   - phase spectrum of s the signal  y~ , 

 a  - amplitude spectrum of the signal  y~ . 
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     Signals  tx  X  differ only in the form of the phase modulation function 

 t , but have a given envelope  a . With given functions  a  and  tB  one 

synthesizes the phase modulation function  t  (or  x ), which minimizes the 

distance between the X  and Y sets [3]. This means that one must determine the 
similarity coefficient: 

      







 max
2

1
, dbaYxC x , (13) 

           dtetBxb ttj
x

~ . (14) 

     The optimal frequency modulation function, which maximizes the similarity 
coefficient (13), shall be determined on the basis of the differential equation 

     cc dadttB 


 22

2

1
. (15) 

     After determining the frequency modulation function  tc  from the above 

equation, in the next step the phase modulation function is determined as 

     dttωt c . (16) 

     In order to determine the phase spectrum of signal  tx  one must resolve the 

integral 

       





2

2

~
T

T

ttjeBX , (17) 

     Using the method of stationary phase [2, 4] one obtains a solution of the form 

     



 

40ttx , (18) 

where 0t - point of stationary phase. 

     In the next step, from the above equation a phase spectrum  x  should be 

determined, which is then mapped to a specified amplitude spectrum  a , in 

order to obtain the signal  ty  closest to the signal  tx  

      
 xj

eay0
~ . (19) 

     The determined phase spectrum  x  is both the phase spectrum of the 

signal  txopt  and the signal  ty0 . The signal  ty0  is obtained by taking the 
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inverse Fourier transform from the signal  0
~y . At this stage, namely after 

determination of the signal  txopt , the main algorithm ends. The results of the 

main program are affected by errors. These errors are coming from the stationary 
phase method and numerical methods used in the Matlab program that 
implements the algorithm. In order to reduce them an iterative method was build 
and the signal  0

~y  was used as the input signal for this method. 

     In the next paragraph the simulation results of both programs, the main one 
and the iterative one, are presented. 

3 Simulation results 

With given functions  a  and  tB  the phase function  t  (or  x ) of the 

optimal signal  txopt  is synthesized. This function minimizes the distance 

between the sets X  and Y . On the basis of the shape of  txopt  signal, having 

the optimal phase function  t , the resulting autocorrelation function  tRopt  is 

determined. 
     In order to verify the correctness of the program’s performance, the synthesis 
of a signal with a nonlinear frequency modulation (NLFM) was made. The signal 
has a bell shaped amplitude spectrum, given by  

   






 ,

1

2

2

2
a . (20) 

     The envelope of synthesized signal was rectangular 

  














2
for0

22
-for

1

T
t

TT

TtB . 

     Signal parameters that were used during the simulation: 

   = 200, 

 T  = 4. 

     The goal of this simulation was to confirm the correctness and usefulness of 
the iterative procedure for the synthesis of the signal having a nonlinear 
frequency modulation function. On the basis of the given amplitude spectrum 
a signal with non-linear frequency modulation function was obtained (fig. 2). 
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Figure 2: Frequency modulation function. 

 

 
Figure 3:  Autocorrelation function after one iteration ( 200).   

     In fig. 3 the obtained spectrum and autocorrelation function is presented. 
     As can be seen in figures 3 and 4, the result of the synthesis is not 
satisfactory. Although the level of the first side lobe of the autocorrelation 
functions is -24 dB, the amplitude spectrum does not have the bell shape. The 
amplitude spectrum is almost rectangular. Because of that the result is passed to 
 

 tc  

t

t

  dBtR  
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

   0
optx  

 

Figure 4: Amplitude spectrum after one iteration ( 200).   

 

Figure 5:  Autocorrelation function after thirty iterations ( 200).   

the second (iterative) program. After the execution of thirty iterations significant 
improvement of the properties of the autocorrelation function can be seen (fig. 5 
and fig. 6). 
     In fig. 5 and fig. 6 one can see the effectiveness of the iterative method. After 
thirty iterations the level of the first side lobe decreased by 7 dB (to –31 dB). In 
fig. 6 one can see how the shape of the power spectral density (PSD) function 
PSD of thirtieth iteration rise much slower than after the first iteration and in the 
same time both PSD-s overlap in 5050  region. 
 

t

  dBtR  


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
 

Figure 6: Power spectral density after first iteration and after thirty iterations 
( 200 ). 

 

 

Figure 7: Comparison of PSD-s after the first, second and thirtieth iterations. 

     Fig. 7 shows how the iterative method changes the PSD function in a chosen 
number of iterations. The curve of the thirtieth iteration is filtered to improve the 
clarity of the figure. 
     The final autocorrelation function, after 150 iterations, and the PSD are 
shown in fig. 8 and fig. 9 respectively. 
 

   0
optx  

data 

2nd 

1st





1st iteration 

30th iteration 

   0
optx  


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Figure 8: Autocorrelation function after 150 iterations ( 200 ). 

 

Figure 9: Power spectral density after 150 iterations ( 200 ). 

     In fig. 8 the resulting autocorrelation function was plotted. The side lobes are 
on equal level of -40 dB. The first side lobe is barely noticeable and its level is – 
48 dB. That is an improvement of 24 dB in comparison to the first iteration. Also 
the PSD plotted in fig. 8 is almost the ideal bell shaped. This proves the 
effectiveness of the iterative method. The noise that can be seen in fig. 9 comes 
from used numerical methods. 

t

  dBtR  

   0
optx  


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4 Conclusion 

This paper discusses the key aspects of the signal synthesis needed for the 
selection of signals with a desired autocorrelation function, for example in radar 
technology. The results of previous theoretical studies and numerical results 
confirm the usefulness of the method discussed in the article from the standpoint 
of the signal optimisation. The iterative method reduces the errors introduced by 
the method of the stationary phase and the errors that are coming from used 
numerical methods. The presented method of the signal synthesis is very useful 
for cases where the desired autocorrelation function and the subsequent results of 
the calculations cannot be represented in a strict analytical form. Another key 
advantage of the presented algorithm is that the used numerical methods allow us 
to find the optimal solution, having at the entrance, only a discrete set of desired 
signals PSD points without any prior knowledge about the signal itself.  

Acknowledgement 

This work was supported by the Polish Ministry of Science and Higher 
Education from sources for science in the years 2009-2011 under project 
OR00007509. 

References 

[1] Sołowicz, J., Institute of Radioelectronics Technical Report, Warsaw, 2008, 
(in Polish). 

[2] Vakman, D.E. & Sedleckij, R.M., Voprosy sinteza radiolokacionnych 
signalov, Sovietskoye Radio: Mosva, 1973 (in Russian). 

[3] Kawalec, A., Lesnik, C., Solowicz, J., Sedek, E. & Luszczyk, M., Wybrane 
problemy kompresji i syntezy sygnałów radarowych. Elektronika, 3, 
pp. 76-83, 2009 (in Polish). 

[4] Cook, C.E. & Bernfeld, M., Radar Signals: An Introduction to Theory and 
Application. Artech House: Boston and London, 1993. 

 

Computational Methods and Experimental Measurements XV  421

 
 www.witpress.com, ISSN 1743-355X (on-line) 
WIT Transactions on Modelling and Simulation, Vol 51, © 2011 WIT Press




