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Abstract 

In this paper the two-dimensional, non-isothermal fluid flow past an in-line tube 
bank has been numerically analyzed by the finite element method. The flow is 
assumed to be incompressible, laminar and unsteady. To stabilize the discretized 
equations of the continuity and momentum, the streamline-upwind/Petrov-
Galerkin scheme is employed and also the energy equation is solved using the 
Taylor-Galerkin method. Reynolds number of 100, Prandtl number of 0.7, and 
pitch-to diameter ratios (PDRs) of 1.5 and 2.0 are chosen for this investigation. 
Having obtained the flow and the temperature fields, the local skin friction 
coefficient and the local Nusselt number are calculated for the tubes in the 
bundle at different times. A comparison of the present study results with the 
results of experiments of other investigators, showed good overall agreement 
between them. 
Keywords: finite-element, tube bank, in-line, skin friction, Nusselt number. 

1 Introduction 

The study of the fluid flow around a tube bank, widely used in many engineering 
phenomena, is importance such as heat exchangers, nuclear and chemical 
reactors, etc. In the past it was not possible to apply numerical methods 
therefore, the results were drawn experimentally. It is obvious that the 
experimental methods are not economical and are very limited to work out. The 
first leaders in the experimental applications in this subject were Bergelin et al. 
[1] that have presented their investigation of heat transfer and fluid friction of 
flow across the banks of tubes. Oda et al. [2] have considered the investigation of 
the heat transfer processes in tube banks in cross-flow and Massey [3] has also 
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predicted the flow and heat transfer in tube banks in cross-flow too. But the 
numerical applications for fluid flow past a tube bank could be ascribed to 
Launder and Massey [4], who have presented their numerical prediction of 
viscous flow and heat transfer in tube banks. Fujii et al. [5] have presented a 
numerical analysis of laminar flow and heat transfer of air in an in-line tube 
bank. Chen et al. [6] have carried out finite element solution of laminar, 
incompressible flow and heat transfer of air around three and four isothermal 
heated horizontal cylinders in a staggered tube bank and in an in-line tube bank, 
respectively. Fornberg [7] performed a numerical study of flow through one 
infinite row of cylinders in steady-state flow and for symmetric periodic 
conditions. The numerical studies were accomplished by finite difference 
method. Dhaubhadel et al. [8] presented a finite element solution to the problem 
of steady flow across an in-line bundle of cylinders for Reynolds numbers up to 
400 and pitch-to-diameter ratios (PDRs) of 1.5 and 2.0. Gowda et al. [9] carried 
out finite element simulation of transient laminar flow past an in-line tube bank 
with five-tubes deep. They solved the two-dimensional unsteady Navier-Stokes 
and energy equations. Wang et al. [10] have done numerical analysis of forced-
convection heat transfer in laminar, two-dimensional, steady cross-flow in banks 
of plain tubes in staggered arrangements by finite-volume method. Recently, El-
Shaboury and Ormiston [11] have studied numerical analysis of forced-
convection heat transfer in laminar, two-dimensional, steady cross-flow in banks 
of plain tubes in square and non-square in-line arrangements by finite-volume 
method. In this paper we survey the numerical simulation of a two-dimensional, 
laminar, incompressible, and non-isothermal fluid flow and calculations are 
carried out for a tube bank with five-tubes deep at different times. Numerical 
simulation can be assumed two-dimensional flows because the length of the tube 
is infinite, and the fluid flow assumed to be laminar because the fundamental 
equations are based on laminar conditions.    

2 Governing equations and solution procedures 

The transient continuity, momentum, and energy equations in a dimensionless 
form for the incompressible, laminar flow of a Newtonian fluid are, respectively, 
given by 
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where V is the dimensionless velocity vector, t  is the dimensionless time, P  is 
the dimensionless pressure, Re is the Reynolds number, θ is the dimensionless 
temperature and Pe is the Peclet number. The dimensionless variables are 
defined as follows: 

426  Computational Methods and Experimental Measurements XIV

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 48,
 www.witpress.com, ISSN 1743-355X (on-line) 



  

∞
=

U
VV   ,  

D
XX =   ,  

D
U∞=

t
t   ,  

2U
P

∞ρ
=P   ,  

∞

∞

−
−

=
TT

T

w

Tθ , 

µ
ρ

= ∞
∞

DURe   ,  
µ

ρ
=

DURe max
max

  ,  
k

DUρC
Pe maxp=               (4) 

where, X  is the coordinate vector, D is the tube diameter, t is the time, ρ is the 
fluid density, P is the pressure, µ is its fluid viscosity, Cp is its specific heat, U∞ 
is the free-stream velocity, Umax  is the average velocity at minimum flow cross-
section ((Umax / U∞) = PDR /(PDR-1)), T is the temperature, T∞ is the free-stream 
temperature, Tw is the wall temperature and k is the fluid thermal conductivity. 
     The continuity and momentum equations are solved by Galerkin 
approximation and the system of discretized equations for each element is as 
follows: 

0.. )()()()()( =++ eeeee FZKZM                                (5) 
where for each typical element (e), M(e) is the mass matrix, Z(e) is the vector of 
unknown variables, K(e) is the stiffness matrix, containing the linear terms and 
F(e) is the vector containing the convective nonlinear terms that is defined in 
reference [12]. For calculating the flow and pressure fields, the final system of 
equations must be solved which can achieved after assembling the system of 
element equations for all of this elements and therefore the Fortran program has 
been written. For exertion of the upwind, Petrov-Galerkin scheme is used in 
which the weighting function for a typical node is modified in such a way that 
weight of the upwind node is heavier than the downwind node [13].  
     To solve the energy equation and obtain the temperature field, a Taylor-
Galerkin scheme is used [14, 15]. In this method, Taylor expansion with second 
order approximation of temperature is used according to time. The discretized 
equation for a typical element is as follows: 
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where, )e(M , )e(
dK , )e(

aK , )e(
bdK  are the mass, the diffusion, the advection and the 

balancing diffusion matrices for element, respectively. In all the above 
calculations, continuity, momentum and energy equations are solved in the 
unsteady form with dimensionless time step of 0.01. Assuming that the transport 
properties are constant in each time step, continuity and momentum equations 
are solved first and then by using the obtained flow field, energy equation is 
solved and the temperature field is computed. These calculations are repeated in 
the successive time steps until the steady-state are obtained.   

3 Physical model and boundary conditions 
Physical model of flow around an in-line tube bank with five tubes in the flow 
direction and with depth of one is shown in figure 1. In this model, according to 
reference [16], the flow field is considered 5 times bigger than the tube diameter 
in the up-stream (Lus) and 20 times bigger than the tube diameter in down-stream 
(Lds). 
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Figure 1: Physical model of flow around an in-line tube bank. 

     The computational domain and the tube bank boundary condition used in this 
work are also shown in figure 2. This domain is divided into elements which are 
isoperimetric rectangular with four nodes. The velocity and the temperature in 
four nodes of each element are calculated, as well as its centre of pressure. Some 
of the elements of the mesh around the tubes are shown in figure 3. At first, three 
grids of coarse with the number of 6869, medium with the number of 12684 and 
fine with the number of 21679 of elements is used in the computations until 
mesh optimization was made and higher than these elements the results are the 
same. As it can be seen, around the tubes where the velocity and the temperature 
gradient are greater, the finer mesh is adapted. 
     The no-slip and the constant temperature, T=Tw, boundary conditions are 
applied on the surface of the tube. At the inflow, the x-component of the velocity 
vector and the temperature are set equal to the free-stream velocity, U∞, and the 
free-stream temperature, T∞, respectively. At the outlet, the velocity gradient u 
and the temperature gradient in direction x and v-component of velocity equals 
zero, i.e. fully-developed boundary conditions are enforced. In the axis of 
symmetry, the velocity gradient u and the temperature gradient in direction y and 
so v-component of velocity equals zero. Moreover, as a reference value, the 
pressure is set equal to the zero at the outflow. The initial conditions are  

  0  0) , (V =X                                                         (7) 
θ( X , 0) = 0                                                         (8) 

The mathematical model of the problem is expressed by the coupled system of 
eqns (1) through (3) and the initial conditions (7) and (8) together with the 
boundary conditions are shown in figure 2. Reynolds number of 100, Prandtl 
number of 0.7, and PDRs of 1.5 and 2.0 are chosen for the investigation. 
 

 

Figure 2: Boundary conditions in the computational domain. 
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Figure 3: A portion of finite element mesh in in-line array. 

4 Results and discussion 

4.1 Streamlines 

In figure 4 the streamlines for flow past an in-line tube bank with five tubes in 
the flow direction with Reynolds numbers 100, and PDR=1.5 at different times 
until the steady-state reaches, are shown.  At the beginning when the flow comes 
into contact with the tubes, its presence will not be felt by the tubes. Hence, the 
inertia forces dominate the viscous forces and the streamline pattern resembles 
that of an invicid flow (figure 4a). At t = 0.5 the symmetry is lost and the 
incipience of separation can be seen on all the tubes (figure 4b). A pair of 
symmetric eddies normally forms behind the tubes. The eddy in which the fluid 
circulates keeps growing with time until it reaches the steady-state (figure 4c).  

          t = 0.1                       (a) 

                        t = 0.5                       (b)                           

                           Steady-state                (c)                          

Figure 4: Streamlines in the in-line tube bank for PDR = 1.5. 

4.2 Isotherms 

The isotherms for flow past an in-line tube bank with five tubes in the flow 
direction with Reynolds numbers 100, and PDR=1.5 at different times until the 
steady-state, are shown in figure 5. It is possible to predict the amount of heat 
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flow at different times and in the various points of the tube bank. It is obvious 
that in places where isotherms are closer to each other, the temperature gradient 
is greater and heat transfer is higher. The isotherms at t = 0.1 of figure 5(a) are 
crowded over the entire tubes and are symmetrical. As time passes, this 
symmetry is lost because of the recirculation region between the tubes 
(figure 5(b)). The growth of isotherms follows the growth of streamlines. In 
figure 5(c), it can be seen that, in the steady-state, the isotherms are crowded 
over the front half of the first tube that indicate a high radial heat flux and the 
temperature difference is around 300 to 400K. But over the other tubes, low 
velocity recirculation flow interacts with parts of the front half of the subsequent 
tubes indicate lower radial heat flux. 
 

 
                                    t = 0.1                         (a)                        

 
                                   t = 0.5                         (b) 

     
                                 Steady-state              (c) 

Figure 5: Isotherms in the in-line tube bank for PDR = 1.5. 

4.3 Skin friction coefficient 

Shearing action between the fluid and the tube surface, which is also known as 
local skin friction coefficient has been investigated. For laminar and 
incompressible flow past a tube bank, after calculations of the flow field for each 
tube, the local skin friction coefficient (Cf) is defined as: 
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where, τw is the tube wall shear stress, tV  is the dimensionless tangent velocity 
vector and n  is the dimensionless normal vector on surface.  
     Figure 6 shows these coefficients for PDR of 1.5 at the steady-state. At the 
first instance, the distribution of friction coefficient is the same as that for all the 
tubes. This is because the flow initially behaves like a potential flow. As time 
passes, the local skin friction coefficient decreases and for the first tube is 
different from those for the following tubes. The maximum local skin friction 
coefficient is the same for all the tubes, except the first tube that it is a little 
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bigger and it is almost for an angle of 80°. For the tubes, except the first tube, the 
minimum value of Cf that is initially on the rear half of the cylinder has shifted to 
the front portion of the tube with progress in time, and it is for an angle of 30°. 
Figure 7 shows local skin friction coefficients for PDR of 2.0 at the steady-state. 
As it can be seen, those decrease over all the tubes compare to PDR of 1.5, 
because the velocity gradients are lower at higher PDRs. In this figure, the Cf  
results are analoged with Ref. [12] and show good overall agreement. 
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Figure 6: The local skin friction coefficients for PDR = 1.5. 

  

Figure 7: The local skin friction coefficients for PDR = 2.0 at the steady-
state [9]. 
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4.4 Nusselt number  

Nusselt number is one of the vital parameters of interest to the designer. The 
local Nusselt number and the bulk temperature are defined as: 

)|
n

(
1

1)|
n

(
)TT(

DNu w
b

w
bw ∂

∂
θ−

−=
∂
∂

−
−=

θT                         (10) 

∞ρ

ρ
=
∫

U)2/S(

dy
T

D

2/S

2/D
b

D

uT
                                          (11) 

where D is the tube diameter, Tw is the wall temperature, Tb is the bulk 
temperature at minimum cross-section and SD is the transverse pitch. 
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Figure 8: The local Nusselt number for PDR = 1.5 at the time = 0.1 and the 
steady-state. 

     Figure 8 shows the distribution of the local Nusselt number around the tubes 
for PDR of 1.5 at dimensionless time 0.1, and for the steady-state. In the initial 
phase, t = 0.1, the distribution of local Nusselt number is almost the same on all 
the tubes; on the other hand, the temperature gradient is intense around the tubes, 
thus the Nusselt number is great. As time passes, the local Nusselt number 
decreases and for the first tube differs from the second and subsequent tubes.  As 
a result, the thinner boundary layer over the first tube leads to a higher 
temperature gradient and, thus, to a higher heat transfer rate at the tube surface. 
The maximum Nusselt number for the first tube occurs in the region of the front 
stagnation point, and then as the fluid moves, it decreases with the growth of 
thermal boundary layer and for the next tubes occurs at around angle of 60°. The 
minimum Nusselt number for the first tube corresponds to the boundary layer 
separation point; but for the next tubes Nusselt number is minimum in the 
stagnation point because it occurs in the recirculation region behind tube. 
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Figure 9 shows the distribution of the local Nusselt number around the tubes 1, 2 
and 5 at the steady-state for PDR = 2.0. As it can be seen, those decrease over all 
the tubes. In this figure 13b, Nu results are compared with [12,13] and are shown 
good overall agreement. 

 

Figure 9: The local Nusselt number for PDR = 2.0 at the steady-state [11]. 

5 Conclusions 

The problem of the two-dimensional non-isothermal fluid flow past an in-line 
tube bank is numerically simulated by the finite element method. The flow was 
assumed to be incompressible, laminar and unsteady. Reynolds number of 100, 
Prandtl number of 0.7, and PDRs of 1.5 and 2.0 are chosen for the investigation.  
     At the beginning when the flow comes into contact with the tubes, its 
presence will not be felt by the tubes. The distribution of friction coefficient and  
the distribution of local Nusselt number is almost the same on all the tubes. 
Hence, the inertia forces dominate the viscous forces and the streamline pattern 
resembles that of an invicid flow. At the first instance, the isotherms are crowded 
over the entire tubes and are symmetrical and the temperature gradient is intense 
around the tubes, thus the Nusselt number is great. As time passes, a pair of 
symmetric eddies normally forms behind the tubes and they grow with time until 
the flow reaches the steady-state and also the local skin friction coefficient and 
the local Nusselt number decrease until they reach steady-state. For the tubes, 
except the first tube, the minimum value of the local skin friction coefficients that 
is initially on the rear half of the cylinder has shifted to the front portion of the 
tube with progress in time. The growth of isotherms follows the growth of 
streamlines. At the steady-state, the thinner boundary layer over the first tube 
leads to a higher temperature gradient and, thus, to a higher heat transfer rate at 
the tube surface, the maximum Nusselt number for the first tube occurs in the 
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region of the front stagnation point, and then as the fluid moves, it decreases with 
the growth of thermal boundary layer and for the next tubes occurs at around 
angle of 60°, the minimum Nusselt number for the first tube corresponds to the 
boundary layer separation point; but for the next tubes Nusselt number is 
minimum in the stagnation point because it occurs in the recirculation region 
behind tube. 
     The local skin friction coefficients and the local Nusselt number are found to 
be dependent on pitch to diameter ratios (PDRs) and are higher for smaller PDRs 
and vice versa. A comparison of the present study results with the results of 
experiments of other investigators, showed good overall agreement between 
them. 
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