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Abstract

A second order finite volume model for the resolution of the two dimensional shal-
low water equations with turbulent term is presented. It is shown that, if a first order
upwind method is used to discretize the hydrodynamic equations, a considerable
amount of numerical viscosity (or diffusion) is produced. For this reason a sec-
ond order method has been developed, which makes use of the mean gradient of
the variables in a cell. To compare the first and second order methods, the Cavity
Flow problem is used. Then a backward step problem is solved, using the k − ε
turbulence model to calculate the turbulent viscosity at every point. The results are
compared with experimental measures and they confirm the good behavior of the
model.
Keywords: finite volumes, shallow water equations, numerical viscosity, turbulent
term, gradient mean values.

1 Introduction

The two-dimensional shallow water equations (2D-SWE) describe the behavior of
free surface flows in which the ratio of the depth to the horizontal dimensions is
small and the magnitude of the vertical velocity component is much smaller than
the magnitude of the horizontal velocity components. This situation can be found
for instance in the flow in channels and rivers.

2D-SWE take into account the turbulence effects both through the frictional
terms and the second derivatives term. This last term may not be significant in
many practical problems when we only need an estimate of energy losses. How-
ever, its inclusion may become very important for an accurate simulation of recir-
culating flows.
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In a first approach we discretized the hydrodynamic equations with a first order
finite volume method. An important point when working with this method is to
properly calculate the numerical flux at the cell edges. The upwinding of the flux
term has proved to be a useful technique, but it produces a considerable amount of
numerical diffusion. For this reason it has been developped a second order method
that makes use of the mean gradient of the velocity components in a cell.

To compare the first and second order methods for uniform viscosity values, the
Cavity Flow problem has been used with three viscosity values. Then a Backward
Step problem has been solved and its results have been compared with experimen-
tal measures. The eddy viscosity values at every point have been generated with
the depth averaged k − ε model.

In this work: 1) we describe the first and second hydrodynamic models; 2) we
compare them in the Cavity Flow problem; 3) we combine the second order hydro-
dynamic model with the first order k−ε turbulence model, comparing the obtained
results with experimental measures.

2 The shallow water equations

The 2D-SWE system in conservative form is expressed as

∂U
∂t

+
∂F1

∂x
+
∂F2

∂y
= G, (1)

being the vector of unknowns U and the flux terms

U =


 h

hu

hv


 , F1 =


 hu

hu2 + 1
2gh

2

huv


 , F2 =


 hv

huv

hv2 + 1
2gh

2


 (2)

and being the source term

G =


 0
gh(S0x − Sfx) + St1

gh(S0y − Sfy) + St2


 . (3)

In the above expressions h is the fluid depth, u and v are the horizontal velocity
components and g is the gravity acceleration. S0x, S0y are the geometric slopes.
Sfx, Sfy are the friction slopes

Sfx =
n2u

√
u2 + v2

R
4/3
h

, Sfy =
n2v

√
u2 + v2

R
4/3
h

, (4)
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where Rh is the hydraulic radius. Finally, St1, St2 are the turbulent terms

St1 =
∂
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(
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∂x

)
+

∂

∂y

(
νth

[
∂v
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+
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])
, (5)

St2 =
∂
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(
νth

[
∂v

∂x
+
∂u

∂y

])
+

∂

∂y

(
2νth

∂v

∂y

)
, (6)

where the coefficient νt is a variable called eddy (or turbulent) viscosity.

3 Discretization of the equations

3.1 Construction of the finite volume mesh

The finite volumes used in this work are based on a triangular discretization of the
domain (see Figure 1). For each node I, the barycenters of all the triangles that
have the common vertex I as well as the midpoints of the corresponding edges
are considered. The boundary Γi of the cell Ci is defined by these points. By
Γij = AMB we represent the part of Γi that is also part of Γj . The outward
normal vector to Γij is ηηηηηηηηηηηηηηij . The norm of ηηηηηηηηηηηηηηij , ‖ηηηηηηηηηηηηηηij‖, is the length of the edge and

η̃̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃ηij = (α̃ij , β̃ij)T is the corresponding unit vector. The subcell Tij is the union of
triangles AMI and MBI.

3.2 Discretization of the hydrodynamic equations

At this point we wish to integrate the 2D-SWE, what results in∫∫
Ci

∂U
∂t

dA+
∫∫

Ci

∇∇∇∇∇∇∇∇∇∇∇∇∇∇ · FFFFFFFFFFFFFFdA =
∫∫
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G dA, (7)
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Figure 1: Finite volumes construction.
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where the operator ∇ stands for
(
∂
∂x
, ∂
∂y

)
and FFFFFFFFFFFFFF = (F1,F2). If we apply the

Gauss theorem to the flux term, it results

∫∫
Ci

∂U
∂t

dA+
∫

Γi

FFFFFFFFFFFFFF · η̃̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η dA =
∫∫

Ci

G dA. (8)

The details on the application of the FVM to the 2D-SWE, by making use of the
upwind Van Leer Q-scheme [1], can be found in Fe et al. [2]. The discretized
expresion of the 2D-SWE that corresponds to node I is

Un+1
i − Un

i

�t Ai +
∑
j∈Ki

‖ηηηηηηηηηηηηηηij‖φφφφφφφφφφφφφφn
ij =

∑
j∈Ki

(
Aijψψψψψψψψψψψψψψ

n
ij + ‖ηηηηηηηηηηηηηηij‖ψψψψψψψψψψψψψψn

νij

)
, (9)

in which Un
i and Un+1

i are approximations to the solution of eqn (1) within each
cell Ci and at time steps tn and tn+1. Ai and Aij are the cell and subcell areas.
Ki represents the set of neighboring nodes of I. The numerical flux φφφφφφφφφφφφφφn

ij is the
approximation of Z = FFFFFFFFFFFFFF · η̃̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η, at Γij , j ∈ Ki and at t = tn, and it is given by

φφφφφφφφφφφφφφn
ij =

Z(Un
i , η̃̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃ηij) + Z(Un

j , η̃̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃ηij)
2

− 1
2

∣∣Q(Un
Q, η̃̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃η̃ηij)

∣∣ (Un
j − Un

i ). (10)

Q is the jacobian matrix of Z. |Q| is defined as X |Λ|X−1, where |Λ| is the
diagonal matrix given by the absolute values of the eigenvalues of Q and X is the
eigenvectors matrix of Q. UQ represents the vector of variables at the midpoint
between I and J.

The numerical source in eqn (9) has two terms. In the first of them, it is calcu-
lated as

ψψψψψψψψψψψψψψn
ij = (I − |Q|Q−1)Ĝ0 + Ĝf , (11)

where the numerical geometric and friction slopes are respectively

Ĝ0 =




0

g
hn

i + hn
j

2
Hj −Hi

dij
α̃

g
hn

i + hn
j

2
Hj −Hi

dij
β̃



, Ĝf =




0

ghn
i (−Sfx)n

i

ghn
i (−Sfy)n

i



, (12)

being dij the normal distance from I to Γij . It can be noted that the numerical
geometric slope Ĝ0 is upwinded [1], while the numerical friction slope Ĝf is
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discretized pointwise [3], which is a widespread method to treat this term. In the
second term, the numerical source takes the form ψψψψψψψψψψψψψψn

νij = Ĝt, being

Ĝt =




0

νti + νtj

2
hn

i + hn
j

2

(
2
un

xi + un
xj

2 α̃+
vn

xi + vn
xj

2 β̃ +
un

yi + un
yj

2 β̃

)

νti + νtj

2
hn

i + hn
j

2

(
vn

xi + vn
xj

2 α̃+
un

yi + un
yj

2 α̃+ 2
vn

yi + vn
yj

2 β̃

)



(13)

the numerical turbulent slope. The eddy viscosities νti and νtj have no time indices
since it is assumed that they are constant at each node throughout the hydrody-
namic computational process. The values un

xi, u
n
yi, v

n
xi, v

n
yi represent the average

of the derivatives of u, v at cell Ci and at time t = tn.

un
xi =

(
∂u

∂x

)
Ci,tn

, un
yi =

(
∂u

∂y

)
Ci,tn

, (14)

vn
xi =

(
∂v

∂x

)
Ci,tn

, vn
yi =

(
∂v

∂y

)
Ci,tn

. (15)

These averaged values can be calculated from the values at the cell edges and a
way to calculate them is shown et al. [2].

Equation (9) provides then a time explicit method to calculate the variables, at
every node I and at every time step, from the previous time step values at node I
and its neighboring nodes.

4 The second order model

4.1 The cavity flow test: first results

Now we are going to test the first order model by using the Cavity flow problem, a
classical benchmark for the two dimensional Navier-Stokes equations (2D-NSE).
2D-SWE are obtained from the three dimensional Navier-Stokes equations and
they are different from the 2D-NSE. The latter do not take into account the third
dimension in space, but only the velocities and pressures of a theoretical planar
flow, whereas 2D-SWE consider the third dimension by means of the variable
depth, and the pressure is expressed as a function of the depth. However both sys-
tems produce very similar results with uniform viscosity values and the results of
this test may be very useful to asses the ability of the proposed model to accurately
represent viscous flows.

The problem consists in obtaining the velocity field in a square domain of 1 ×
1 m2. A regular mesh of 81 × 81 nodes is employed. The boundary conditions, of
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Figure 2: First order model: a) ν = 0.01; b) ν = 0.001; c) ν = 0.0001.

Dirichlet type, are: u = 1, v = 0 at the upper side; u = v = 0 (no-slip condition)
at the other three. In the Cavity Flow problem, the form of the streamlines depend
on the flow Reynolds number Re. Taking the values V = 1 and L = 1 for the
velocity and length scales, the resulting Re is

Re =
V L

ν
=

1
ν
, (16)

which allows us to simulate Reynolds numbers of 100, 1000, 10000 by varying
the viscosity value. The resulting streamlines are shown in Figure 2 and it can be
observed that the difference between the three cases is much smaller than what
should be expected with a difference in viscosity values of almost 0.01 m2/s. The
reason must be found in the high numerical viscosity (or diffusion) inherent in first
order upwind methods. This numerical viscosity is known to depend on the mesh
size and, even with a reasonably fine mesh such as the one used here, its effects
are unacceptable. A method to reduce it with a first order method has already been
proposed [2], but it reduces the stability as well. For this reason we have developed
a second order model.

4.2 The mean gradient

An important aspect, when working with the finite volume method, is to properly
calculate the numerical flux at the cell edges. In the first order method described
before, it has been supposed that the values of u, v were uniform within each of
the two cells Ci and Cj having a common interface Γij . The main point to obtain
a second order model is to employ instead a linear approximation for the variables
within each cell. To this end we have used the mean gradient of the velocity com-
ponents, which was calculated in Section 3. This mean gradient is obtained from
the values at the cell edges, thus involving the variables values at the adjacent cells.

Let us take, for instance, the variable u and call ui, uj its uniform values within
Ci and Cj . The linear reconstruction produces, at each side of Γij , the following
values of u: - Side Ci : u∗i = ui +

(∇∇∇∇∇∇∇∇∇∇∇∇∇∇u)
Ci

· (rM − rI).

- Side Cj : u∗j = uj +
(∇∇∇∇∇∇∇∇∇∇∇∇∇∇u)

Cj
· (rM − rJ),
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Figure 3: a) First order scheme, b) Second order scheme.
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Figure 4: Second order model: a) ν = 0.01; b) ν = 0.001; c) ν = 0.0001.

Figure 5: Reference streamlines: a) ν = 0.01; b) ν = 0.001; c) ν = 0.0001.

being M ∈ Γij the midpoint between I and J . In this way the difference between
the u values on both sides of the interface, which is responsible for the numerical
viscosity added, is reduced (see Figure 3). The streamlines obtained using the sec-
ond order scheme are shown in Figure 4 and we see that they agree very well with
the reference streamlines taken from Vellando et al. [4] (Figure 5).

4.3 The turbulence model

As it has been shown, the 2D study of viscous fluids with Reynolds numbers below
10.000 can be carried out by using constant values for the viscosity. To represent
real turbulent flows, however, it is necessary to calculate the turbulent viscosity
νt at every point. To obtain it we have used the depth-averaged k − ε turbulence
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model [5] where νt is calculated as

νt = cµ
k2

ε
, (17)

being k and ε the turbulence kinetic energy and the dissipation rate per unit mass
respectively. They are given by the transport equations

∂k

∂t
+ u

∂k

∂x
+ v

∂k

∂y
=

∂

∂x

(
νt

σk

∂k

∂x

)
+

∂

∂y

(
νt

σk

∂k

∂y

)
+ Ph + PkV − ε, (18)

∂ε

∂t
+ u

∂ε

∂x
+ v

∂ε

∂y
=

∂

∂x

(
νt

σε

∂ε

∂x

)
+

∂

∂y

(
νt

σε

∂ε

∂y

)
+ c1ε

ε

k
Ph + PεV − c2ε

ε2

k
.

(19)

A way to implement these equations together with the hydrodynamic equations
has been fully described in Fe et al. [6]).

4.4 Measurement of the velocity and turbulent kinetic energy

The model has been applied to a real channel and experimental measurements of
the velocity components have also been made, from which we have calculated the
turbulent kinetic energy k. The experimental data were obtained at the Hydraulics
Laboratory of the Civil Engineering School of A Coruña with SONTEK Micro
Acoustic Doppler Velocimeters that produce a small distortion of the velocity field.
They are highly accurate (10−3 m/s) and they take between 80 and 250 measure-
ments per second. As the output values have a maximum frequency of 50 Hz, every
one represents an average of several measurements. In our case, 2500 values of the
velocity components were obtained at every point, during a period of 100 s. The
velocimeters were placed at a distance from the bottom of 9.36 cm, at 368 points.

The system gives the three mean velocities u, v, w and the three standard devi-
ations σx, σy, σz . Since the model is two-dimensional only the x and y deviation
have been taken into account, what seems more coherent with the previous hypoth-
esis. The experimental value of the turbulent kinetic energy is then calculated as

k =
1
2
(σx

2 + σy
2). (20)

4.5 Description of the installation and boundary conditions

The experimental domain consisted of a horizontal channel made of glass with an
abrupt expansion, commonly known as Backward Step. The dimensions can be
seen in Figure 6. For the experimental process, a discharge of Q = 20.2 l/s, was
employed and a depth of h = 24.2 cm was measured at the end of the channel.
Both were the upstream and downstream boundary conditions used for the numer-
ical model. At the walls, the friction velocity condition, described in Fe et al. [6],
was considered.
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Figure 8: Second order model. Streamlines. General view.

4.6 Results

The model was applied with a first order discretization. We noticed that the influ-
ence of using the k − ε model to generate the νt values was insignificant, due
again to the numerical viscosity introduced by the upwinding. The results show a
reattachment length too short (Figure 7).

Then the second order model was used. The resulting streamlines simulate much
better the ones obtained from the experimental measures. They are presented in
Figure 8 in a general view, and in Figure 9 in an enlarged view to compare them
with the experimental results (Figure 10). The computational results for k are
shown in Figure 11. The levels are well predicted, but the position is not so accu-
rately assessed. Due to the simplifying hypothesis made for the walls, the model
fails to reproduce the high k levels near the right wall of the channel.

5 Conclusions

We have shown that the consideration of the turbulent term improves the accuracy
in the representation of 2D recirculating viscous flows, provided that the numerical
viscosity produced by the upwinding is reduced. To this end a second order dis-
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Figure 11: Second order model. Turbulent kinetic energy.
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Figure 12: Experimental measures. Turbulent kinetic energy.

cretization of the velocity components has been proposed, achieving an accurate
resolution of the velocity field in the three Cavity Flow tests solved.

The second order model, in combination with a k − ε model, has produced a
remarkable improvement with respect to the first order model in a Backward Step
problem. The proposed model has correctly calculated the position and length of
the eddy. The computed k levels are close to the ones obtained from experimental
measures.
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