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Abstract 

In this paper a neural detector of internal parameter changes in a stationary, non-
linear SISO dynamic system, represented by a discrete model of the NARX type, 
is considered. The system analysed in this paper is described by the nonlinear 
difference equation y(n) = f(y(k-1), …, y(k-p), u(k), …, u(k-q), Θ), where f is a 
non-linear function, y(k), …, y(k-p) are the output samples, u(k), …, u(k-q) are 
the input samples and Θ is a vector of internal parameters of the system. The 
values of the vector Θ can be changed in random moments of time, but these 
values belong to the finite set, so that detection of parameter changes can be 
considered as classification of signals acquired for different values of changeable 
parameters. Such a formulation of the problem can be suitable in industrial 
applications where the change of parameters can model selected faults (or 
changes of an operating point) of an industrial dynamic system. To decrease 
dimensionality of classified data, extraction of specific characteristics from a 
time-frequency transform of an output signal, produces a vector of features Φ, 
which constitutes the decision space for classification. As the intelligent 
approach to such a complex problem is justified, the extracted signal features are 
the inputs of a neural network. The LVQ (Learning Vector Quantisation) neural 
network has been chosen because of its ability of learning data classification, 
where the similar input vectors are grouped into a region represented by a so-
called coded vector (CV). Such an approach corresponds to pointing out the most 
probable values of the vector Θ. The detection ability of the LVQ network, both 
in a non-noisy and noisy environment, has been examined in detail in the paper. 
Keywords: time-frequency transforms, detection of abnormal states of dynamic 
system, LVQ neural classifier. 

Computational Methods and Experimental Measurements XIV  271

 © 2009 WIT PressWIT Transactions on Modelling and Simulation, Vol 48,
 www.witpress.com, ISSN 1743-355X (on-line) 
doi:10.2495/CMEM090251



1 Introduction 

The complexity of the systems that we use on a day-to-day basis is constantly 
growing. Hence an abnormal work of a system can occur more frequently, so 
that a variety of computer aided methods for evaluation of system reliability is 
strongly required. Automatic detection of changes in a system state is an 
important subject, because such a change can reflect undesired faults of a system. 
Early detection of these changes allows one to protect a system, for example by 
changing a control algorithm. The concept of detection of a current system state 
presented in this paper assembles some methods and algorithms of signal 
processing, feature extraction and feature classification with the use of neural 
networks. Mathematically, a state of a discrete SISO system can be described by 
a set of difference state equations and an output equation with a specific 
collection of parameters Θ 
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or a direct input–output difference equation with another equivalent set of 
parameters, Ξ 
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where f is a nonlinear function. 
     From a signal point of view, tracking parameter changes could be understood 
as detection of non-stationarity of a system in a long time horizon. In this paper a 
nonlinear dynamic model with changes of parameters in random instances of 
time is analysed. It can be assumed that each change of parameter values creates 
a new non-nominal model of a dynamic system. It is also assumed that there is a 
finite number N of changes hence the same number of corresponding collection 
of models (classes) {ω1, ω2, …, ωN} is formed. Thus the detection of parameter 
changes can be formulated as a multi-model classification. To categorise a 
current system state into classes, a vector capturing unique features of a system 
has to be created, based on observation of the output signal y(n). Afterwards a 
classifier is applied to feature vectors to assign data to one of several classes. 
     Most of classification algorithms require probabilistic information: P(ωi) - 
class prior probability, p(y|ωi) - class-conditional density and P(ωi|y) - posterior 
probability, which is rarely given a priori [1]. The stochastic classification rules 
use the most frequently following approaches: discriminant functions, the 
optimal Nearest Neighbour classifiers. Each of these rules has some advantages 
and disadvantages. The other approaches utilise expert systems or other artificial 
intelligence techniques, such as neural networks and fuzzy logic [2]. 
     In the present study, in order to classify the signals, a feature vector Φ is 
formulated by a time-frequency processing of an output signal. Time-frequency 
representations originated from the Wigner-Ville transformation, require a 
troublesome optimisation of a transformation kernel that leads to the minimum 
classification error. Due to the great number of data possible to obtain after such 
a processing, an approach resulting in compressed data is required. Feature 
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extraction is a method of data dimension reduction. Both the discrete wavelet 
transform (DWT) and the continuous wavelet transform (WT), as affine time-
frequency transformations, are frequently used for this task [3]. The main 
advantages of wavelets is that they have a varying window size, being wide for 
slow frequencies and narrow for the fast ones. Thus it leads to an optimal 
time-frequency resolution in all frequency ranges. Furthermore, owing to the fact 
that windows are adapted to the transients of each scale, wavelets are able to 
process non-stationary signals. 
     A lot of papers address DWT as a discrete decomposition with multi-scale 
wavelet transforming of signals for features extraction. Unlikely to continuous 
wavelet algorithms, discrete algorithms are represented by a collection of a finite 
number of decomposition coefficients what is a compressed form for a signal 
representation. A vector Φ could be for example: mean of the absolute values of 
the wavelet decomposition coefficients, maximum of the absolute values of the 
wavelet coefficients, average power of the wavelet coefficients, standard 
deviation of the wavelet, the absolute sum of the wavelet coefficients at each 
resolution level, ratio of the absolute mean values of adjacent sub-bands, 
distribution distortion of the coefficients [4–7]. By signal processing methods we 
could reduce the signal (i.e., the original waveform) to a lower dimension 
represented by a vector Φ. Next a vector Φ has to be entered to an input of a 
neural LVQ classifier, performing an appropriate classification and pointing out 
the most probable values of vector parameters Θ. 

2 The formulation of the problem 

The approach proposed in the paper consists of four steps: 
• exciting of a system by non stationary signals; 
• transforming an output signal through chosen time-frequency transforms; 
• extracting the feature vector Φ from characteristic points of a time-

frequency transformation; 
• detection and classification of the vector Θ by an LVQ network. 

     An important problem in the successful detection, treated here as the 
classification, is a choice of an excitation signal of a dynamic system which 
allows to enhance unique properties of a system. An excitation signal should be 
located in an essential frequency band of a dynamic system. In the presented 
method, an excitation signal u(k) consists of two Gaussian atoms, well-separated 
both in time domain and in the time-frequency plane, called non-stationary 
Gaussian atoms. 
     The Gaussian atom is a short signal with a Gaussian envelope modulated by 
the signal m(t)=ejνt. An excitation signal is non-stationary because it cannot be 
written as a discrete sum of sinusoids [8]. 
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     Frequencies of exciting atoms have to be selected very carefully, according to 
frequency properties of a system. A choice of atoms (generally not only two) as 
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the excitation signal allows one to expect that after the non-liner processing 
performed by a dynamic system, atoms are equally well separated. From this 
point of view the output signal is also non-stationary. Time-frequency processing 
of atoms after non-linear processing also preserves separation of localisation in 
the time-frequency plane and emphasizes even subtle differences resulting from 
parameter changes, which are invisible in the time domain. Selection in a 
specific way a finite number of characteristic points of the time-frequency 
transformation allows to formulate a low dimension feature vector Φ. In this 
study the wavelet transform Tx(t, a, Ψ) as an example of time-frequency 
processing is considered 
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     The set of wavelets Ψt,a(s) are created in the following way 
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     The variable a represents the scale whereas t is the translation of the 
mother-wavelet. Calculating wavelet coefficients at every possible scale 
generates a lot of data. If we choose scales based on powers of two, so-called 
dyadic scales, we can formulate an indexed family of wavelets from the mother 
wavelet function in the form 
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     The wavelets defined in such a way play a substantial role in multiresolution 
decomposition of a signal in different decomposition levels. The mother wavelet 
function Ψ for i = 0, j = 0 must satisfy the multiresolution condition related to 
the scale equation φ (x) 
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where h and g can be viewed as filter coefficients of half band low-pass and 
high-pass filters, respectively. J-level wavelet decomposition can be computed as 
follows 
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where aj, k and dj, k are approximation (AC) and details coefficients (DC). Discrete 
wavelet transform can be defined by a collection of approximation and details 
coefficients. In each decomposition level a signal is divided into two sub-bands 
by two filters: a low-pass and a high-pass. Approximation coefficients 
correspond to a low band, detail coefficients correspond to a high band 
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respectively. The selection of an appropriate wavelet and the number of 
decomposition levels is a key problem, because each scale of decomposition 
represents a particular coarseness and unique properties of the signal under the 
study [9]. Multiresolution analysis leads to hierarchical and fast algorithms of 
computing of DWT coefficients. 
     In this paper the following quantities were chosen for creating the vector Φ: 
energies of approximation and details coefficients in sub-bands for selected 
levels of decomposition, means of wavelet coefficient absolute values in 
sub-bands for selected levels of decomposition, variances of wavelet coefficients 
in sub-bands for selected levels of decomposition, average power of 
decomposition coefficients in sub-bands for selected levels of decomposition, 
ratios of averages of mean details coefficients in sub-bands. It is also assumed 
that parameters of nonlinear system from a set Θ = (θ1, θ2, …, θM) can be 
changed in a stepped way in random time instances ki creating non-nominal 
models corresponding to N classes ωi, i = 1, …, N. Between changes the 
parameter values are constant. The goal of the classifier is the selection of the 
most probable value of the element from the vector Θ, which corresponds to the 
selection of the class ωi. Time interval between changes 〈ki, ki+1〉 is enough long 
to perform classification. 

2.1 Neural identifier of parameters values 

Learning Vector Quantisation (LVQ) is a supervised version of vector 
quantisation, similar to Self-Organising Maps (SOM) based on the Kohonen's 
works [10¸ 11]. Classes for each input pattern are predefined. The goal of the 
LVQ algorithm is to define class boundaries based on prototypes, covering the 
input space of samples in such a way that the boundaries divide the space, 
creating the best approximation of regions occupied by data belonging to each 
class. Prototypes are also called ‘codebook vectors’ (CV); each of them 
represents a region labelled with a class. They are localised in the centre of a 
class or a decision region (‘Voronoi cell’) in the input space. A class can be 
represented by an arbitrarily number of CVs, but one CV represents one class 
only. The division (tessellation) of the input space performed by the set of CVs is 
optimal if all data within one cell belong to the same class. 
     From the neural networks point of view, the LVQ network is built as a 
feedforward net with one hidden layer of neurons, fully connected with the input 
layer. A CV can be described as a hidden neuron (‘Kohonen neuron’) or a weight 
vector of the weights between all input neurons and the regarded Kohonen 
neuron. Coded vectors are constructed during supervised learning of a network. 
Learning modifies the weights in accordance with adapting rules and changes the 
position of a CV in the input space. The classification after learning is relied on 
finding a Voronoi cell, specified by the CV with the smallest distance to the 
input vector and assigning it to the labelled class. The most frequently the 
Euclidean distance is used for comparison between an input vector and the class 
representatives. The node of a particular class which has the smallest distance is 
declared to be the winner. 
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3 Numerical experiments 

The dynamic system under study is the second order non-linear system with the 
state equation given by eqn. (10) and a vector of internal parameters 
Θ = (a, b, c, d). Nominal values of the system parameters 
[a, b, c, d] = [1.0, 1.0, 3.0, 1.5]. 
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     Graphs of the system output equilibrium points for the nominal set of 
parameters versus a constant input signal u (i.e. static characteristics of the 
system) and the family of amplitude frequency characteristics (system gain for a 
harmonic input of a single, changeable frequency) are other forms of system 
description, fig. 1. 
     In numerical experiments performed in this study it was assumed that c was 
the only changeable parameter and could change in the range [-2; +2] around its 
nominal value. It was also assumed that the current value of that parameter 
would be assigned to the five-element set, Θc ∈ {1; 2; 3; 4; 5}, i.e. the actual 
value of c “around” 2 will be identified as cdes = 2. In that way five classes 
(clusters) were established in the range of variability of c parameter; the values 
closed to nominal represented one of these classes. The characteristics of the 
system over the range of parameter changes are presented graphically in fig. (2). 
     In the series of extensive numerical experiments, the system was excited by 
two Gaussian atoms with frequencies from the essential frequency band of the 
system, what can be seen in fig. 1. 
     From examination of a variety of features of wavelet decomposition of the 
output signal, it turned out that Daubechies wavelets (db family), symlets 
wavelets (sym family) and reverse biorthogonal spline wavelets (rbio family) 
have the best separation properties to be exploited for the classification task 
considered in this study. 
 

    

Figure 1: Examples of graphs describing the nonlinear system. 
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Figure 2: Examples of graphs describing parameter changes of the system. 

     To prepare training data for the LVQ classifier, the set of 205 system output 
signals (41 per each class) has been obtained for simulations. To obtain a set of 
signals representing each class (corresponding to the class centre value 
cdes ∈ Θc), simulations were performed for c changing in the range [-0.4; +0.4] 
around the centres, with the step equal to 0.02. 
     Then the discrete wavelet decomposition of the output signals were 
performed up to the fourth level decomposition for the wavelet families 
mentioned above: Daubechies of order 3 (db3), symlets of order 3 (sym3) and 
reverse biorthogonal spline of order 2.2 (rbio2.2).  
     The feature extraction stage consisted of computing the following sets of 
values: energies of details coefficients, means of coefficient absolute values, 
variances of decomposition coefficients, average power of decomposition 
coefficients, ratios of averages of mean details coefficients. Detailed examination 
of the above characteristic values revealed that the combinations of selected 
subsets of them are sufficiently good to create classification space, i.e. the 
feature vectors to be passed to LVQ inputs. Fig. 3 shows the examples of 
characteristic variables extracted from wavelet decomposition (with db3 
employed at level 4), which reveal good separation properties.  
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Figure 3: Energies of detail coefficients and variances of coefficients for 
db3_lev4 up to fourth level decomposition. 
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Table 1:  Classification accuracy [%] – db3 wavelets, 4-th decomposition 
level. 

 Input noise variance σ2 
Input data/ 
Competitive 

neurons 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.09 0.10 

Coefficients 
energy 

25 neurons 

99.5 100.0 99.0 98.5 97.6 96.1 93.7 90.2 88.3 

Coefficients 
energy 

15 neurons 

98.5 98.5 98.1 98.1 98.1 96.1 95.1 91.7 89.8 

Coefficients 
variance 

25 neurons 

99.5 100.0 99.0 98.5 97.6 96.1 93.7 90.2 88.3 

Coefficients 
variance 

15 neurons 

98.5 98.5 98.1 98.1 98.1 96.1 95.1 91.7 89.8 

 

Table 2:  Classification accuracy [%] – rbio wavelets, 4-th decomposition 
level. 

 Input noise variance σ2 
Input data/ 
Competitive 

neurons 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.09 0.10 

Coefficients 
energy 

25 neurons 

99.0 98.5 98.1 97.6 96.6 96.1 96.1 95.1 95.1 

Coefficients 
energy 

15 neurons 

98.5 97.5 97.6 97.1 96.1 95.6 95.1 94.6 94.1 

Coefficients 
variance 

25 neurons 

100.0 99.5 99.0 98.5 98.1 97.6 97.1 96.1 96.1 

Coefficients 
variance 

15 neurons 

99.5 99.0 98.1 98.1 96.6 96.1 95.1 94.1 93.2 

 

     Among several LVQ architectures examined, two of them: with 15 neurons (3 
per class) and with 25 neurons (5 per class) in the competitive layer shown the 
best performance during the training. For a variety of feature combinations, 
classification accuracy obtained by the above networks during the training 
ranged from 97% to 100%. 
     For further analysis, the above LVQ structures with the five-elements input 
vectors created from mean energies of coefficients (at approximation and details 
levels) and coefficient variances (at the same levels) have been chosen. Tables 1, 
2 and 3 show classification accuracies of the networks when the excitation signal 
is contaminated with white noise (random numbers of zero mean and normal 
distribution) of increased variance. These cases correspond to the situation, when 
the desired, exact values of the input flow cannot be provided due to inaccuracies 
of actuators functioning in the system. As it could be expected, increased noise 
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Table 3:  Classification accuracy [%] – sym wavelets, 4-th decomposition 
level. 

 Input noise variance σ2 
Input data/ 
Competitive 

neurons 
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.09 0.10 

Coefficients 
energy 

25 neurons 

99.5 100.0 99.0 98.5 97.6 96.1 93.7 90.2 88.3 

Coefficients 
energy 

15 neurons 

98.5 98.5 98.1 98.1 98.1 96.1 95.1 91.7 89.8 

Coefficients 
variance 

25 neurons 

99.5 100.0 99.0 98.5 97.6 96.1 93.7 90.2 88.3 

Coefficients 
variance 

15 neurons 

98.5 98.5 98.1 98.1 98.1 96.1 95.1 91.7 89.8 

Table 4:  Classification accuracy [%] for extended range of parameter 
variability. Wavelet decomposition at 4-th level. Input noise 
variance σ2 = 0. 

Wavelet family 
 db3 rbio sym db3 rbio sym 

Number of neurons in Kohonen layer 
 25 15 

Range of parameter changes  
 Classification features – mean energy of coefficients 

(0.40; 0.45] 70.0 70.0 70.0 70.0 70.0 70.0 
(0.45; 0.50] 63.0 60.0 63.0 62.0 60.0 62.0 

 Classification features – mean variance of coefficients 
(0.40; 0.45] 70.0 66.0 70.0 70.0 70.0 70.0 
(0.45; 0.50] 63.0 60.0 63.0 62.0 63.0 62.0 

 
variance causes deterioration of classification, but even with relatively large 
noise variance, the classification quality is acceptable (especially for reverse 
biorthogonal spline wavelets). 
     The next experiment examined the extrapolation ability of the LVQ classifiers 
(however good performance of the network outside the training range should not 
be expected in any case). Table 4 shows the accuracy for values of c parameter, 
which stay outside the interval (i.e. symmetrically on both sides of the central 
point from Θc), from which the values for network training have been chosen. 
The border ±0.5 means that parameter c having such a value can be equally 
likely assigned to two neighbouring classes. As it can be seen, the classification 
accuracy for c values from outside the training range significantly decreases. 

4 Conclusions 

Detection of parameter changes in a nonlinear dynamic system and identification 
of values of a changeable parameter, via classification of features extracted from 
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the output signal, has been considered. The detection scheme consisted of system 
excitation with a non-stationary signal, data pre-processing with the use of 
discrete wavelet transform, feature extraction by aggregation of properties of 
wavelet coefficients and intelligent classification with the use of LVQ networks. 
Simulation experiments confirmed that wavelet decomposition has the ability to 
separate signal features for different ranges of parameter values. Also, that the 
classification system is robust to noise and has certain extrapolation ability. 
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