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Abstract 

The safety of deep mines is sometimes threatened by sudden and hazardous 
failures of a coal face, as in the case of bumps, for example. It has been shown in 
many experimental studies that coal bumps are influenced either by stress, 
stiffness, and yield ability of surrounding rocks, or by dynamic effects associated 
with the failure of surrounding strata. In addition, bumps occurred in such parts 
of mines where there had been rapid stress changes over a short period of time. 
The dynamic effects associated with the failure of surrounding strata triggered 
bumps in these marginally stable seam structures. While it was not possible to 
evaluate the influence of mine stiffness directly, it was shown that coal bumps 
generally occurred in mines with uniaxial compressive strength and Young’s 
modulus ratios (roof to coal) exceeding 3 to 5. In addition, bump-prone coal 
exhibited the potential for storing high horizontal stresses. Yielding of the 
immediate roof and floor reduced horizontal stresses and enhanced gradual 
failure of coal. A method is proposed to assess coal bumps in which stress 
analyses, in situ strength data, stiffness and strength ratios of roof to coal, and 
affected wave magnitude resulting from strata failure and mining experience are 
incorporated. A rheological model is involved to fulfill the time dependence of 
the phenomenon of bumps. It has namely been shown in the literature that the 
time plays a decisive role in the possible occurrence of rock bursts. In our case 
the static (stability) problem is solved and the dynamical influence of inertia 
forces is initiated after occurrence of bumps. This is not of any importance for 
us, as we suppose that the mine is far enough from other openings (other mines). 
In this way the stability problem with possible rheology (or creep) is studied.  
Keywords:  rock bursts (bumps), scale modeling, coupled modeling, natural 
existence of occurrence of bumps, numerical model of contact problem. 
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1 Introduction 

The paper deals with an application of coupled modeling in identification of 
dislocation occurring in coal mines threatening workers in the underground 
structures. The bumps can be induced for different reasons, one being the 
accumulation of energy in unpredictable dislocations. The measurement on site 
is very expensive and unreliable. One of the most reliable is physical modeling, 
which enables one to carry out parametric studies and after certain results from 
these models one can assess the most probable concentration of stresses. On the 
other hand, the stresses are measured in a very difficult way, so that numerical 
analysis should take place. In numerical analysis the contact problem in limit 
state estimation is based on data from physical modeling. The physical modeling 
seems to be the best for linear analysis. This is not the case of our study and 
large attempts have to be carried out to estimate the real behavior of the material. 
With support of physical modeling mathematical formulation and numerical 
treatment can lead to the danger of occurrence of bumps. In general, the large 
iteration should be used to solve the strongly nonlinear problem in both 
subdomains ranged in boundaries given by possible dislocations, and on the 
interfacial boundary (dislocations). In order to eliminate some principal 
directions of iteration the physical modeling is used and the numerical processes 
become bearable. A typical example from praxis verifies the theory based on 
back analysis. 
     Extensive studies were done by Elices et al., Haramy and McDonnell [3] and 
Haramy et al., [4], who showed a methodology on how to estimate the possibility 
of bumps. In [2] the authors tried to explain reasons for bumps based on a couple 
of experiments. The conditions for bumps in coal mines under a strong roof are 
described in [3], where possible bumps are analyzed and explained. A 
methodology for assessment of pillars in longwall mining is suggested in [5]. 
Scale modeling of rock bursts is described in [6]. The method and equipment 
mentioned in [6] are very powerful for illustration of bump evaluation, as the 
extrusion of coal grains into free space can be seen in a natural way.  
     Numerical modeling can be found in [7], for example, where the cracking is 
described by a cohesive zone method, which starts with Griffith and Barenblatt 
theories. A very promising method seems to be partition of unity, presented in 
[8], for example, where a theoretical explanation can be found, or in [9], where a 
direct application of the mentioned method to a cracking material is shown. 
Another method appropriate for description of cracking is called the manifold 
method; its advanced version is published in [10]. Discrete methods became very 
popular in describing nucleation of cracks and consequent occurrence of bumps. 
One of such method is denoted as free hexagons of statical particle flow code, 
[11]. Coupled modeling, consisting of implementation of results from 
experimental (scale) models into numerical computation, is proposed in [12]. It 
is based on involvement of eigenstrains or eigenstresses as design parameters in 
identification of material properties.  
     In this paper the most dangerous crack in a rock overburden of a coal seam is 
determined. 
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2 Experimental study 

The principal objective of the experimental and numerical model research was 
the clarification of mechanical behavior of the coal seam and a close and distant 
overburden of one selected seam in connection with the origin of rock bumps in 
the proximity of localization in the north Czech Republic. 
     The first phase comprised the simulation of exploitation of the seam under 
consideration. The extraordinarily difficult and exacting character of the problem 
required an unconventional approach to its solution. For this reason the physical 
model of equivalent materials was supplemented with a mathematical and a scale 
model. This combined approach was selected to make the individual partial 
methods mutually link up and complement each other to advantage and so enable 
a more comprehensive insight into the whole problem. 
     As some data required by mechanical properties, particularly those 
concerning the shear and triaxial strength, were not available (the required 
measurements had not been made in the given area), it was necessary to verify 
the strength characteristics of the rock mass in the environs of the principal 
crosscut by a contact problem. Experiments with models from physically 
equivalent materials provided a detailed stress distribution in rock environment 
(with the assumption of its ideally elastic behavior) and supplemented very 
appropriately the results of measurements made on physical models. Generally, 
two concepts of rock bursts are distinguished: The first assumes that a first bump 
occurs and then the dislocation appears as a consequent of weakened overburden. 
The second idea starts with the dislocation in the overburden and the bumps is an 
aftermath of the situation caused by the cracked dislocation. The latter case is 
considered in this study after obtaining the realistic material properties from 
measurements on site. Hence the appraisal of the relations and consequently the 
maintenance of the situation on site can be carried out. The geometry and 
possible failure in the neighborhood of the face of the long wall mining is 
depicted in Fig. 1, where also the source of dynamic propagation is shown. 
 

     

Figure 1: Static and seismic energy released after limit concentration at the 
face of the wall. 
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3 Verification of material parameters of rock environment 

To determine the characteristics of equivalent material used for physical model 
construction it was necessary to comply with the requirements of physical 
similarity between the model and the rock environment. However, the 
measurements required for this purpose were not made in the full extent. For this 
reason it was decided to verify and/or refine the selected shear parameters of the 
rock mass by the DEM in such a way that the results for the free hexagons fed by 
data from laboratory experiments had to comply with the results from beards 
build up in the beginning of the construction of the mines. It appeared that there 
were deep differences in these results and the numerical approach had to be 
basically improved. 
     Long term monitoring of the rock mass in crosscut environs has ascertained 
that its extraction does not impair ambient rock. Consequently the shear 
parameters not producing any extensive failure zone in the environs of the 
working may be considered as the basic shear strength of the rock mass. Under 
these assumptions the problems were formulated as follows: 
1.  The shear parameters were estimated on the basis of the rock strength 
(admissible values of the material parameters) in uniaxial compression and 
tension and literary data. 
Alternative  A :   c    =  5.5  MPa 
                    φ    = 35° 
                       +σ = 5.0  MPa  
where c is the cohesion (shear strength), φ is the angle of internal friction, 
and +σ  is the tensile strength. 
2. The non-linear problem, based on the same shear strength assumptions, was 
solved to refine the convergence of the working. 
3.  The problem solved as another alternative, was based on the following 
strength parameters: 
Alternative B:    c   = 10 MPa 
   φ  = 65.5°  
             +σ = 4.1 MPa 
The difference in the extent of failure zones should show the minimum shear 
strength of the rock mass. The solution of all problems assumed the initial stress 
state due to overburden weight and characterized by the value of the coefficient 
of the side pressure Ke  = 0.54. Physical non-linearity was concentrated on the 
dislocation. The program makes it possible to respect the different behavior of 
the materials in compression, in tension and after load relief.  
     Compressive strength is controlled in accordance with the first failure theory, 
i.e., by a comparison of the maximum shear stress with the shear strength of the 
respective material. This control is performed only if the octahedral normal 
stress σoct is a shear stress. In the opposite case the control concerns shear 
according to the generalized Mohr theory of failure expressed in octahedral 
stresses. 
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4 Solution of underground continuum by the BEM 

In this part we briefly describe an implementation of the boundary element 
method to the solution of specific problems of underground continuum, for 
which the numerical method appears to be extraordinary advantageous. 
     The method, among others, reduces the problem by one. Further good 
application of the boundary element method is the optimization and/or contact 
problems which concern the boundary only. Then, in spite of the finite element 
method it suffices to study a change of location of boundary elements only. 
     The problem is solved as two-dimensional, i.e. a possible dislocation is long 
enough, and a narrow seam is considered. Moreover, the nonlinear behavior is 
considered in the region, which is sufficiently close to the dislocation, according 
to Mises theory. Suspicious dislocation is given from the experimental model 
from physically equivalent materials. 
     In our following consideration we will concentrate on the physically 
nonlinear problems (nonlinear evolution is also included in boundary 
conditions). Let us solve the problem in domain Ω. We originate from the 
Cauchy equations: 
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and u = (u1, u2) is the displacement field, (X1, X2) are components of the volume 
weight and σij

0 are components of the tensor of initial stress. 
     These equations will be solved in the coordinate system 0x1,x2. In the sense of 
BEM, (1) may be reformulated in an equivalent form: 
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5 Contact problem 

Before we start the analysis preliminary considerations will be introduced. In 
order to explain the process of computation the two-dimensional problem will be 
treated. The three-dimensional problems are solved similarly. 
     Let the problem be described from experimental study. Ωseam is the domain of 
the seam, for which the dislocation and the bearing capacity is to be assessed.  
 

 

Figure 2: Domain and denotation of the example under study. 

After discretization of (2) in the sense of the boundary element method the 
problem leads to the system of algebraic equations: 
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where the upper index - denotes "from the left" and + denotes "from the right“, g 
is the vector of prescribed surface forces along the boundaries Г and Гp, pc is the 
vector of surface forces on fictitious contact Гc and F includes the effect of 
volume weight.  
     As the vector g contains known quantities we can rearrange the previous 
equations to obtain: 
 



















+
+

+

=
















+
+
+

−



































++

+

+

+ g
31c

g
21

-
c

g
11

c33
-
c31

c23
-
c21

c13
-
c12

c

-
c

333231

232221

131211

GF
GF

GF

pGpG
pGpG
pGpG

u
u

u

AHH
AHH
HHH

     (5) 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

898  Computational Methods and Experimental Measurements XIII



     Suppose now that for example −
cu  and +

cu  is known. Then the problem is 

uniquely solvable, so that the matrix 11H is regular. For a similar reason the 
matrices Hkk are regular, too. Also, the same assertion holds for the matrices G11,, 
i = 1,2. This is the general result of solvability of linear problems of elasticity by 
the boundary element method. We can conclude that the matrix H is singular, but 
the last submatrices are regular matrices. This is why it is possible to rearrange 
the system in the sense of matrix canonical transformations (in algorithm we use 
Gaussian elimination) to obtain: 
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where the balance condition 
 

+− −== ccc ppp                                              (7) 
 
was employed. The matrices are known while the vectors u and p remain 
unknown. From the last form the reducibility follows and we can employ the 
following system of equations: 
 

21c31c33
-
c32 cpBuAuA =−+ +  
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                                    (8) 
 
Generally, along the contact line only balance condition holds and the 
compatibility is prescribed with the aid of more complicated relations. For 
example, suppose that at each nodal point along the contact line holds: 
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where T and c are prescribed coefficients (they may very along the contact), pn 
and pt are projections of tractions to the normal and tangential direction with 
respect to the contact line, respectively. Then Uzawa’s algorithm can be applied 
to the contact problem – see, e.g., [12]. In the domain the rheological model is 
applied according to Fig. 3 with the coefficients: 
     Elasticity modulus E  = 10 GPa, Poisson’s ratio ν  = 0.21, peak cohesion = 
1.2 MPa, peak angle of internal fiction = 300, dilation angle = 00, peak tensile 
strength = 4 MPa (not used), residua cohesion = 0.2 MPa, cohesion softening 
rate = 0.001, residua fiction angle = 200, fiction softening rate = 100, rock 
viscosity = 10-19 MPa (average used).  
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Figure 3: Schematic of the rheological model. 

     The critical shape of the searched dislocation is depicted in Fig. 2. The way of 
overall vertical stresses together with a description of typical longwall mining is 
illustrated in Fig. 4. Fig. 5 displays distribution of principal strain rates for two 
basic materials: the left describes a roof with plastic properties and the right 
material properties being “almost” brittle. The envelope of the peak stresses 
describes the most dangerous states for possible occurrence of bumps. The 
picture was obtained from numerical computation, based on tuned material 
properties from the scale model and in situ measurement of material parameters.   
 

 

Figure 4: Stress state in the ground after the excavation of the panel. 

6 Conclusions 

Geotechnical data, mining experience, and long-term underground observations 
were analyzed in an effort to better understand causes of violent failure in U.S. 
coal mines. There it was shown that coal bumps are influenced by the interaction 
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of geologic and stress conditions that govern the post failure behavior of coal-
measure rocks. Case studies provided new insight into the buildup of horizontal 
stresses, geometric factors that cause zones with high stress gradients, contrasts 
in stiffness and the mechanical properties of rock and seam, and failure of upper 
strata. 
     In this paper a combination of experimental tests in scale models from 
physically equivalent materials provided input data for numerical models, the 
mechanical properties which were tuned to get a more realistic view of the real 
situation. The aim of the numerical model was to determine critical dislocation, 
which causes the critical state on the interface of the overburden and coal seam. 
The energy accumulated at the tip can be calculated from the numerical model 
after finishing the computation using the above described conditions. The 
decisive factors are principal strain rates. 
     In any case, experience, numerical modeling, and engineering judgment 
should be used to assess the extent of yielding in mine roofs and floors; such 
controlled yielding may help reduce horizontal stresses and lead to less violent 
failures. Lack of yielding within the roof, coal, and seam promotes high bump 
potential where there is a high risk of a seismic event and a low factor of safety.  
 

 

Figure 5: Two types of material response in compression for varying 
principal strain rates. 
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