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Abstract 

In this work a model of a 2D spur gear transmission is described for analysis of 
tooth contact forces and deformations. Assuming the position of each wheel is 
known, the contact points between gears are obtained taking into account the 
geometric description of the tooth profiles including profile errors and relief 
modifications. Then the deformation in each contact point is separated into a 
global and a local term combining a finite element model and an analytical 
formulation originating from Hertzian contact theory. The proposed procedure 
does not need new element meshing for each angular position thus obtaining an 
important computational advantage. Afterwards, a non-linear system of 
equations is obtained and solved for each gear position in order to calculate the 
meshing contact forces. The model can include the possibility of bidirectional 
single-flank or double-flank action as well as friction forces in the out-of-action 
line. Once the contact forces are known, it is possible to use the procedure in the 
calculation of loaded transmission error and meshing stiffness. Furthermore, 
each gear is supported by ball bearings that are included in the model taking into 
account their clearance and their variable stiffness due to the change in the 
number of balls supporting the load. This variable bearing compliance modifies 
the gear centre distance and as a consequence the transmission error during a 
turn. Using this methodology a numerical example is presented where the static 
behaviour of a spur gear transmission is described and analysed. Special 
attention is focused on the influence of load level on the final loaded 
transmission error.  
Keywords:  gear, transmission error, bearings, tooth contact, load ratio. 
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1 Introduction 

Gears are one of the most important mechanical components in many advanced 
machines. Ranging from industry to space, automotive or agricultural equipment, 
there are a wide range of machines that use gears. This fact justifies the interest 
in the study of gear dynamics with the aim of design, condition monitoring and 
vibration and noise control. In this sense it is possible to find works about topics 
related to gear dynamics such as profile modifications, surface generation 
kinematics, non-linear interactions, noise, friction, dynamic tooth loads, wear, 
contact and bending stresses, condition monitoring, efficiency, etc. All of these 
subjects are also closely related to the so-called Transmission Error (TE), which 
is defined as “the difference between the position that the output shaft of a drive 
would occupy if the drive were perfect and the actual position of the output” [1]. 
There are three main sources of TE: geometry, deflections and dynamics. 
Although transmission error is a common term used by the gearing community it 
is possible to add certain names depending on the source that produces the final 
TE. Thus, it is possible to distinguish between manufacturing, kinematic 
(sometimes confused with manufacturing), static and dynamic TE. In this work 
we are interested in the static transmission error also known as Loaded 
Transmission Error (LTE) as this could be used as an external input excitation 
for dynamic analysis [2] or as a measure directly related to the noise level of a 
certain gear transmission.  
     There is also one other quantity of interest, the meshing stiffness, which 
governs the dynamic behaviour of geared systems acting as a parametric 
excitation of the gear pair. The periodic change of the number of contacting teeth 
pairs is one of the most important phenomena involved in gear dynamics. There 
are several approaches to include it in the dynamic models from the simple 
average throughout a meshing cycle to more accurate formulations taking into 
account the stiffness variation along the tooth profile for each pair [3,4]. 
Nevertheless, some aspects are normally neglected such as the elastic coupling 
between successive teeth under load, the non-linear variation with the load level 
or the influence of the support deflection in the final meshing stiffness. Many 
available dynamic models use a simple formulation for the gear stiffness as their 
interest is focused on dynamics neglecting all of the terms that could be very 
useful in certain cases. Special attention should be paid to the case of condition 
monitoring where a good description of the dynamic forces is crucial for good 
prediction of machinery condition [5]. The most accurate works [6,7] use the 
finite element method combined with contact algorithms for evaluating the 
forces in meshing teeth. Nevertheless, a new meshing is necessary for each 
angular position, thus making it a high consumption computational task. There 
are some proposals to avoid this such as the application of Artificial Neural 
Networks [8] or the combination of finite elements and analytical formulations 
for the contacts [9,10]. 
     In this work a new model for analysis of contact forces between gear pairs 
including the interaction with rolling bearings is presented. The gear model is 
based on the formulation proposed in [9], while bearings include clearances and 
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the non linearity due to the changing number of rolling elements supporting the 
load, following the approach proposed in [11]. Bearing clearances and variable 
stiffness modify the operation distance between gear centres as well as the 
pressure angle of the transmission. As a consequence, LTE, meshing stiffness 
and load ratio should be modified. In this work the proposed model is used only 
for quasi-static calculations in order to obtain the teeth contact forces and 
deflections as well as their derived quantities such as LTE, load ratio and 
meshing stiffness. 

2 Gear contact forces 

The calculation of gear contact forces requires the solution of three different 
problems; the description of the gear body geometry, the determination of the 
contact points as a function of the gear position, and the calculation of the 
contact forces themselves.  
     The first task will be the definition of the tooth profiles in order to be able to 
solve the other problems. In this work, the gear generation will be based on a 
rack-type tool following Litvin’s vector approach [12] taking into account the 
possibility of tool displacements and also undercutting conditions. Furthermore, 
a rounding profile was added in the tooth tip to handle corner contact. 
     Contact points and their corresponding separation distances (δi) have been 
obtained taking advantage of the analytical properties of involute profiles and tip 
rounding arcs. Positive values for separation distance mean that the points should 
be in contact and negative values indicate a non-contact condition. Two types of 
contacting profiles have been considered: involute-involute and involute-circle 
arc. The number of potential contact points will depend on the contact ratio (ε) 
and can be expressed as 

( )2 ( ) 1N Ceil ε= +  
where Ceil(x) is a function that rounds x to the nearest integer towards infinity. 
Contacts on both flanks of any contacting tooth have been considered. In figure 1 
the potential contact points for a spur gear pair with a contact ratio between 1and 
2, which means two contact teeth pairs, are shown. 
     The calculation of gear forces requires a relationship between the forces and 
displacements of the contact points. This relation should take into account not 
only the elastic deflection of a pair of teeth in contact but also the local 
deflection in the vicinity of the load as well as the load sharing between more 
than one teeth pair. Due to the complexity of gear geometry, which is composed 
of several parts (involute, fillet, tip rounding), a common procedure for handling 
this problem is the development of a finite element model for two gears or only a 
portion of their teeth and applying a type of gap elements in order to simulate the 
contact [6,7,13]. Special attention should be paid to the definition of contact 
loads and boundary conditions. The resulting load, neglecting frictional forces, 
should be approximated to the elliptic distribution characteristic of the Hertzian 
contacts. Furthermore, as the contact width will be affected by the load, a small 
size meshing in the vicinity of contact points should be provided to be valid from 
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low to high load levels. Finally, a different meshing is desired for each position 
of the contact along the tooth profile. This approach is very time consuming and 
would not be practical if a dynamic simulation were desired. 
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Figure 1: Potential contact points. 

     Another possibility is to consider the elastic deflections divided in two 
different contributions: local deflections of Hertzian type in the vicinity of 
contact points and global deflections, also called structural, that include all the 
deflections (bending, and shearing) except those due to the local contact.  
     Local deflections are normally approximated using a non-linear formulation 
based on Herztian theory or any of its variants. In this work, the local 
deformation was obtained applying the following expression derived by Weber-
Banashek for bi-dimensional problems. The deformation between the surface 
and a line at a depth h is 

( )2 2 2 22 1
( ) 1 1 1

1L
h h h hu q q Ln

E L L L L
ν ν

π ν
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where q is the load intensity along the thickness and 2L is the extension of the 
elliptic distribution of the pressure around the location of the load, which can be 
written as 

2 21 14 ;p g p g

p g p g

L q
E E
ν ν ρ ρ

ρ ρ
π ρ ρ

 − −
= + =   + 

 

     On the other hand, structural deflections have been obtained by means of a 
plane strain (or plane stress) finite element model presented in figure 2. The 
model only contains a certain number of teeth depending of the contact ratio of 
the gear pair. A unitary load is applied in each node in the profile of the tooth 
located in the vertical position, which will be called loaded active flank, 
obtaining the displacement in the rest of the nodes of the other teeth both in the 
right flank but also in the left one in order to apply the procedure in case of two 
tooth flanks contacts. The displacements obtained will be the flexibility 
coefficients (βi,j) which represent the displacement of the node j due to a unitary 
load applied in the node i of the loaded active flank.  
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Figure 2: 

     This procedure is not valid for the point where the load is applied, as it is a 
stress concentration point. In this case, a local finite element model with the 
same meshing as the global one and a depth h is used to correct the 
displacements in the vicinity of the load point. This model has a unitary load 
acting in the opposite sense to the one applied in the global model, considering 
the nodes on the boundary with the global model as fixed. The displacement 
obtained with this model is removed from the original one avoiding the 
inaccuracy in the local displacement of the node where the concentrated load was 
applied. Then, when n contacts take place, the structural displacements uSj of 
node j will be defined by 

( ),

n

Sj i j i
i

u Fβ= ∑  

     The total displacement of node j is obtained by addition of local and structural 
components for both gears, wheel and pinion, which for n contacts is 

{ } { }1 1( ) ( ) ( ,..., ) ( ,..., )p w p w
Tj Lj j Lj j Lj n Lj nu u F u F u F F u F F= + + +  

     Once the initial separations {δi} of the contact points are known as a function 
of the pinion and wheel centre displacement (rp,rw), and angular position, the 
load distribution {Fi} of gear teeth can be defined on the basis of the following 
conditions: compatibility of initial separations and elastic deflections and 
complementary condition to avoid non realistic negative loads. Taking into 
account the profile errors for each gear the resulting forces should be obtained 
from the following non-linear system of equations for n contact points defined 
by a positive separation distance 

{ } { } { }{ }{ } { }( ) { }( )( , , , ) ( , , ) , ,i p p w w Tj p p w w ip p p iw w wr r u r r F e r e rδ θ θ θ θ θ θ= + +  

under the condition that 0; 1,...,iF i n≥ =  
     Here rp and rw are both vectors representing the location for pinion and wheel, 
θp, θw are the angular positions for each gear and eip, eiw are the profile errors for 
gear and wheel corresponding to the contact point i.  
     The geometric separation distance will be used as a first step for calculation 
of contact forces, considering only those that are positive. Nevertheless, the 
solution algorithm verifies the deflection in the other contact points looking for a 
new possible contact. Following this procedure it is possible to calculate the 
forces and their application direction as a function of gear position. 

,i jβiF
iF
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Load and displacements of the finite element model. 



3 Ball bearing contact forces 

Forces in ball bearings involve a similar problem to the gear contact. Again the 
changing number of contacting elements (see fig. 3) involves a variable stiffness. 
Furthermore, load increases the period with the maximum number of elements in 
contact and even the maximun number of contacts themselves. Fortunately, 
bearing geometry is simpler and the following assumptions can be made: 

• Planar movement is considered as in the case of gear forces. 
• Inner and outer races are rigidly fixed to the gear shaft and support. 
• Only deflections of Hertzian type are considered, neglecting bending 

and shearing of races and rolling elements. 
• The angular separation between rolling elements is constant (θb=2π/n). 
• Rolling elements roll on the surface races without slipping.  

     The last assumption provides a simple expression to calculate the cage 
angular position, which controls the angular position for each rolling element, as  

cage shaft
r

r R
θ θ  =  + 

 

where R and r are the outer and inner race radii (see fig 3). 
 

        

Figure 3: Schema of rolling bearing. 

     Force deflection relationship for the local Hertzian contact is defined by 
p

i B iF kθ θδ=  with   2/3=p  for ball bearings 
where kB is the contact stiffness, both inner and outer contacts connected in 
series are considered, and δθi the radial deformation (geometric overlapping) of 
the ith rolling element (located in angular position θi), which will depend on the 
inner race centre movement (x,y) and the bearing clearance c 

cyx ii
p
i −+= θθδθ sincos  

     Only positive radial deformations should be considered in the calculation of 
resultant force as otherwise the ball will not be in contact. Therefore, the 
resulting force for the ith rolling element is obtained as  

r
R

θi

c/2

c/2

X
Y

i

θb
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     Finally the total force is obtained by summation of the n individual forces 
from each rolling element. The resultant force, knowing the angular positions θi, 
can be expressed by the x and y direction components, with the following 
equations, 

1

1

( ) cos
; ( 1)

( ) sin

n
p

x B i i i
i

i cage bn
p

y B i i i
i

F k H
with i

F k H

θ θ

θ θ

δ δ θ
θ θ θ

δ δ θ

=

=


=  = + −

=


∑

∑

 

4 Application example 

The models described in the previous paragraphs have been applied to a pair of 
gear wheels with the same number of teeth, each one supported by two identical 
ball bearings. The main gear parameters are contained in table 1, while the 
support data bearings are defined in table 2 

Table 1:  Gear data parameters. 

Parameter Pinion / Gear 
Number of teeth (Z) 23 
Module (m) 3 (mm) 
Modulus of elasticity, E 210 (GPa) 
Poisson’s ratio 0.3 
Pressure angle 20 (degree) 
Rack addendum 1.25 m 
Rack deddendum 1 m 
Rack tip rounding 0.25 m 
Gear tip rounding 0.05 m 
Gear face width 15 (mm) 
Gear shaft radius 9 (mm) 

Table 2:  Bearing data parameters. 

Parameter Value 
Contact Stiffness kB  7.055 109 N/m3/2 
Number of ball bearings n 9 
Radial clearance c 20 (µm) 
Outer race radius 14.13 (mm) 
Inner race radius 9.37 (mm) 

      
     Before carrying out simulations, taking into account both force models, each 
one is tested individually to validate it. The bearing model was tested applying 
an increasing load in the x direction (corresponding to a torque from -10 to –
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100 Nm) obtaining the equilibrium position for a complete turn of the shaft (360 
degree). The number of active contacts is shown in figure 4, while the 
corresponding orbits are shown in figure 5. It can be observed that a 
displacement in y direction appears even though there is no force applied in this 
direction. Moreover displacement in the y direction is greater than the 
displacement in x direction. Therefore, when bearings interact with gear forces a 
variation of the gear centre position should be expected and therefore a 
modification of the operation distance and pressure angle. 
 

0
50

100
150

200
250

300
350

0

500

1000

1500

2000

2500

3000

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

degree

Load (N)

E
le

m
en

ts

 

Figure 4: Number of active elements. 
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Figure 5: Orbits for several load values. 
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     The gear model was also tested taking into account a fixed position for gear 
centres (rigid support) neglecting profile errors. Then an increasing torque (from 
10 to 100 Nm) was applied and the turn angle necessary to obtain the desired 
torque that will be the LTE was calculated for several angular positions and the 
torsional stiffness was deduced as in reference [6]. 
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Figure 6: LTE (radians) for several load values (rigid support). 
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Figure 7: Torsional Stiffness for several load values (rigid support). 

 © 2007 WIT PressWIT Transactions on Modelling and Simulation, Vol 46,
 www.witpress.com, ISSN 1743-355X (on-line) 

Computational Methods and Experimental Measurements XIII  719



     Both magnitudes are shown in figure 6 and figure 7 for several torque levels. 
Reference angular position corresponds to the contact in the primitive point 
without any clearance. It is clear that the torque increases the period of double 
contact (higher stiffness in figure 7) and the corresponding transmission error. 
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Figure 8: Orbits for several load values with support flexibility. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
x 10

-3

Angle (Degree)

LT
E

 (
ra

di
an

s)

 

Figure 9: LTE (radians) for several load values with support flexibility. 
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     Finally the whole model was tested with the same torque levels. This time the 
interaction between gears and bearings is recorded as can be seen in figure 8 
where the orbits for each gear centre are shown. Figure 9 shows the resulting 
LTE corresponding to the orbits presented in figure 8, assuming a flexible 
support due the bearing flexibility. In spite of the fact that, in figure 9 it is not 
appreciated due to the scale, the model is able to predict an oscillation wave in 
the resulting LTE due to the bearing’s variable compliance. It should also be 
noted that the LTE shown in the figure 9 should be corrected removing the 
angular clearance that appears as a consequence of the variable position of gears. 

5 Conclusions 

A quasi-static model for the study of interactions between gears and ball 
bearings is presented. The main features of the model developed are the 
approximation of the gear contact by decomposition of local and global 
deformations and the inclusion of bearing variable compliance with the angular 
position. An application example was presented where the interaction between 
elements can be observed taking into account the effect of the load, obtaining 
several parameters representative of the system behaviour such as the LTE, 
centre orbits and the number of active contacts in bearings and gears. 
     In this work some quasi-static analyses were presented, nevertheless one of 
the aims of this model was its application to the dynamic analysis of gear 
transmission. Taking into account this fact, special attention was paid to 
achieving a good compromise between accuracy and computational load. 
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