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Abstract 

This paper deals with the study of the behaviour of a slender beam introduced in 
a cylindrical tube and subjected to an axial compressive force. The beam is very 
long compared to its transversal dimensions and therefore it will buckle to a very 
small axial force. The post-buckling behaviour is examined. The study has 
important applications in the petroleum industry, for coiled tubing in the case of 
drilling in horizontal or inclined wellbores. The slender beam has a constant 
cross-section that can have any form, although a circular cross-section is the 
most used in practice.  The problem has a geometrical non-linearity to which the    
non-linearity caused by the friction has to be added. Rotations could be large and 
a special isoparametric 3D beam finite element is elaborated: the Euler-
Rodrigues quaternion was preferred to describe the finite cross-section rotations. 
The paper presents only the static case, but extending the presented approach to 
dynamic analysis is quite natural. The method is very accurate and it is rapidly 
convergent due to the fact that the exact equations, written for the deformed 
configuration, are solved. The iterative Newton-Raphson method was used to 
solve the nonlinear differential equations. 
Keywords:  coiled tubing, finite element method, post-buckling behaviour, Euler 
quaternion, geometrical non-linearity. 

1 Introduction 

A long slender initially straight beam compressed and constrained within a 
circular cylinder is studied in this work. This problem presents a great interest in 
rock engineering and petroleum production. The beam buckles within the narrow 
space of a drill hole under the action of axial force and its own weight. Due to its 
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length, the beam will first buckle according to the classic Euler formula, a 
sinusoidal buckling, when the displacements are considered infinitely small. The 
post-buckling behaviour is much more important because the beam lies on the 
cylinder and friction will occur that diminishes the axial load transmission. The 
problem is highly complicated because it involves a geometrical non-linearity to 
which the friction has to be added. Several theoretical models were proposed, all 
of them based on analytical models, some of them complicated, [1, 2], or based 
on simplified (or even very simple) models using in general a variational 
approach, [3–12]. Experimental measurements were performed as well: some 
works are based only on experiments, [13, 14], while in other works the 
experiments were meant to verify the theoretical models, [1, 2, 4, 11, 12]. 
Almost all theoretical models assume that post-buckling shape is a helix that is 
not always true. Some of them consider even a constant pitch helix that it is 
obviously not exact mainly when the friction is taken into consideration, [4, 12]. 

In this work a numerical method based on finite element method is proposed.  
A special type of finite element is presented, based on some previous works, 
[15–17].  This finite element type is specially conceived for geometrical 
nonlinear beam systems and uses Euler-Rodrigues quaternion and the axial strain 
as generalized  coordinates. It allows a very exact and fast convergent numerical 
model to be elaborated. The beam is initially straight and lies along a generatrix; 
it lies always on the cylindrical surface even after deformation due to the axial 
force. Two boundary conditions were examined, clamped-free beam and double 
hinged beam; significantly different results were obtained for these two cases. 

2 Beam theory 

Because of beam length, the Euler-Bernoulli beam theory is applied. The beam is 
considered initially straight and it has a constant cross-section. The first variation 
of the total potential energy has the expression: 
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where U is the deformation energy, V is the potential of the external load, u is 
the displacement vector, ϕ represents the small rotation vector, p and m are the 
distributed force vector and the distributed moment vector, respectively, acting 
on the beam. Efforts and strains are linked by the relations (Hooke’s low): 

κD== M,0εEAN ,                                        (2) 

where N is the axial effort, E is the Young modulus, A the cross-section area and 
ε0 is the axial deformation of the beam centreline; the moment vector M and the 
curvature κ  have following expressions in the local reference frame:  

( ) ( )321321 , κκκ== κTMMMM                     (3) 
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Mt is the torque and M2, M3 are the bending moments; 1κ , 2κ  and 3κ  are the 
torsion and the two curvatures, that is the variation of angles between two local 
reference frames situated at the infinitesimal distance ds .The Hooke’s low 
matrix D is 
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It, I2 and I3 are second order geometrical properties of the cross-section (I2 and I3 
are the principal inertia moments); G is the transversal elasticity modulus.  

The main difficulty in 3D geometrical non-linear study, in classical 
incremental formulation, is that the rotations form no longer a vector. This is 
why in this work the Euler-Rodrigues parameters are used to describe cross-
section rotation, [15–17]. They are defined for a finite rotation of angle θ around 
the axis defined by the unit vector ( )Tzyx ννν=ν . The rotation is 

represented by the scalar 
2

cos0
θ

=l  and by the vector ν
2

sin θ  grouped in the 

following column matrix, the well-known Euler-Rodrigues quaternion: 
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In this work the finite rotation θ transforms the initial infinite small length 
element ds of the initial straight beam into the final position due to its 
deformation. The four Euler-Rodrigues parameters must verify the relation: 

1T =ll .                                                     (6) 

Knowing the Euler-Rodrigues parameters, the rotation matrix from the initial 
configuration to the actual one, for each cross-section, has the form: 

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 
















−++−
−−++
+−−+

=ℜ
1222

2122
2212

2
3

2
010322031

1032
2
2

2
03021

20313021
2
1

2
0

llllllllll
llllllllll
llllllllll

.                          (7) 

To solve the problem, the total potential energy (1) has to be minimized and 
usually numerical methods are used, finite element method being the most 
effective. The classical large displacement finite element approach considers as 
nodal unknowns (nodal generalized coordinates) small increments of nodal 
displacements and rotations and this approach leads to an extremely time-
consuming incremental formulation. 

In this work the unknowns are axial deformation 0ε and the four Euler-
Rodrigues parameters l. They are grouped into the generalized coordinate vector: 

( )T
3llll 2100ε=q .                                     (8) 
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Curvature vector may be easily expressed in Euler-Rodrigues parameters as: 

l′= Gκ ,                                                     (9) 

where l′  is the space derivative that is with respect to the curvilinear coordinates 
s. The G matrix has the form: 
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The equations are written in the actual reference frame of the current cross-
section and therefore the spatial derivatives are performed with respect of actual 
curvilinear coordinate S different of the curvilinear coordinate s for the initial 
configuration. As the small strain hypothesis was considered, we may consider 
that the length of the beam keep its length during the deformation: 

( ) dsdsdS ≈+= 01 ε . Thus the following symbolic expression may be written: 

sS ∂
∂

≈
∂
∂ . 

In the local reference frame, virtual small rotation vector is expressed in Euler-
Rodrigues parameters as: 

lδδ G=ϕL                                                   (11) 

and in the global reference frame: 

lδδ Gℜ=ϕ .                                                (12) 

Finally the displacements vector u of the current point has the form: 
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where n is the unit vector perpendicular to cross-section. Now there are all the 
ingredients to solve numerically the problem using the variational formulation (1).  

3 Kinematic equations 

In the case of the beam in contact with the tube, the deformed shape of the beam 
is given by the equations: 
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The following relations exists between angles θ, ϕ (see figure 1) and the abscise 
x (for small axial strain 0ε ): 
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R being the radius of the tube, figure 1. Therefore the director parameters of an 
infinite small segment ds of the beam centre-line are: 
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where the angles θ and ϕ result from figure 1.That must coincide to the first 
column of the matrix ℜ  given by (7): 
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It is easy to show that the Euler-Rodrigues parameters satisfying equations (17), 
satisfy also equation (6).  

 

 

Figure 1: Definition of angles θ and ϕ. 

The system resulting from (1) is nonlinear and the iterative Newton-Raphson 
method will be applied, that is at each iteration the system is solved in unknown 
increments.  Equations (17) become in increments: 
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to which the incremental form of the second equation (15) is added: 

ds x 
dx 

θ y 

z 
ϕ 

The pipe (beam)

The tube  
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Equations (18) and (19) represent the relations between the increments of Euler-
Rodrigues parameters and the increments of the two angles θ and ϕ. There are 4 
equations, linking 7 unknown functions, ϕθε ,,,,,, 32100 llll , imposing the 
deformed beam to lie on the internal surface of a tube of radius R. Therefore only 
3 independent generalized coordinates were chosen:  

( )T
10ˆ θε l=q .                                           (20) 

4 Friction forces 

Between the beam and the lateral surface of the tube there are reaction forces. 
Moment equilibrium equations for a slice of the beam, written in the local 
reference frame of each cross-section, is: 
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After each iteration, the generalized coordinates q̂  are known and the Euler-
Rodrigues parameters are known as well; that allow the curvatures κ  to be 
found. The axial effort N and the two shear efforts Q2 and Q3 (the components of 
the vector R) are computed using equation (21). Finally, from the force 
equilibrium equation written in the cross section local reference frame: 

0=+×+
∂
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s
pRR

κ                                                   (22) 

it results the contact pressure p between the beam and the tube. Distributed force 
p will be represented in the cylindrical reference frame. Axes of the cylindrical 
reference frame are: 1 – x direction of the global frame (see figure 1), 2- normal 
direction and 3 – tangent direction in the yz global plane. The normal distributed 
force is 2p . The friction force cannot exceed the value 2pµ , where µ is the 
friction coefficient. If the tangential force is smaller than 2pµ , there is no 
relative motion between the points in contact belonging to the beam and to the 
tube. In any point the following condition must be respected: 

2
2
3

2
1

~~~ ppp µ≤+ ,                                            (23) 

otherwise the “link” is broken and a relative motion is allowed. At each load step 
few iterations are needed in order to establish which among all nodes are moving 
and which are not because of the friction. 

The tube is compressed by an axial force with the condition that the tube 
always lies on the surface of the tube. In the absence of the friction the method is 
not incremental and the solution may be find directly for the final load of the 
load. But in the presence of the friction the approach must be incremental, the 
result depending on the history of the force variation.  
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Figure 2: Two-node and three-node finite elements. 

5 Special finite element 

To solve the problem, finite element method was applied. Isoparametric two-
node and three-node finite elements were used, figure 2. This finite element is 
described in detail in [15–17]. Each node has five degrees of freedom per node 
accordingly to (8).  For the three-node finite element the shape function is:  
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The beam is divided in several finite elements and the load is applied 
incrementally. Finally a non-linear differential system is obtained from 
functional (1) using a procedure similar to the standard one: 

( ) ( ) 0QqqqE =−= K ,                                     (25) 

where K is the secant stiffness matrix that is function of q, obtained by 
assembling elemental stiffness matrices; q is the vector of the generalized nodal 
unknown (8) for the whole structure and Q is the vector of nodal loads. System 
(25) includes the equation (6) for each node. It is interesting to note that all 
elements of secant stiffness matrix K are polynomials in Euler-Rodrigues l and 
strain 0ε . 

To solve the non-linear system, the iterative Newton-Raphson method is 
applied. At each step, at each iteration, equations (18) and (19) are used in order 
to replace nodal degrees of freedom (8) with (20), to impose the beam to lie on 
the cylindrical surface of the tube. In the load step i and for the k-th iteration it 
can be written: 

( ) ( ) ( ) 0ˆˆˆ 1
t =++ kk

i EqδkK ,                                      (26) 

where: 

qq ˆC= , CKCK t
T

t
ˆ= , ECE ˆ= ,                              (27) 

C being a square matrix provided by applying of equations (18) and (19) for all 
nodes of the discretization and ( ) ( ) ( )k

i
k

i
k

i qqq ˆˆˆ 11 −= ++δ . Kt is the tangent stiffness 
modulus, in fact the Jacobean J: 
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The approximate evaluation of the Jacobean may be used, although in the paper 
the exact computing were performed: 

q
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∂
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Often an under-relaxation factor β could improve the convergence: 
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Axial force [N] 

a) Rotation angle θ of the mid node versus axial 
force.  

 

 
 

b) Beam (pipe) view along x 
axis, the beam axis. 

Figure 3: Post-buckling diagram. 

6 Numerical example 

To illustrate the method a MATLAB program was elaborate and the following 
example was analyzed, [6, 7, 13]: double hinged beam (pipe), length L=21340 
mm, outer pipe diameter D=13.72 mm, inner pipe diameter d=6.35 mm, diameter 
of the tube D0=48.26 mm, Young modulus E=2.07e5 MPa, Poisson coefficient 
ν=0.3, 30 3-node finite elements, 61 nodes. Figure 3 shows the dependence angle 
θ  versus axial force, dependence found by the computer code. The Euler 
buckling force is 7.45 N (see figure 3a) and much higher force values were 
studied. Figure 4 presents the deformation configuration of the pipe under an 
axial force of 800 N. One can see that the shape is not exactly a helix: the 
symmetry about the plane perpendicular on the beam, on the mid-node, has to be 
ensured. On the contrary, figure 5 shows the unsymmetrical deformed 
configuration of a clamped-free beam. 
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a) Isometric view (view direction: [1; 0.006; 0.003])

 
b) View along x axis, the 

hole axis. 

Figure 4: Post-buckling shape of a double hinged beam; compression force 
800 N. 

Clamped end 

Free end

View direction: 

 [1; 0.005; 0.005]. 

 
Figure 5: Post buckling configuration for a compressed clamped-free beam. 

7 Conclusions 

In the case of complex structural problems, numerical methods, especially those 
based on finite element method, may describe much more exactly the real 
phenomenon than analytical methods. This is also the case for long and slender 
beam compressed in a cylinder tube, the topic of the present work. A special 
finite element type, mainly conceived for geometrical non-linearity of beam 
systems, was proposed which proved to be fast convergent and exact. 
Equilibrium equations are exact and written on the deformed configuration of the 
beam: this is possible only because the generalized nodal coordinates are the 
elements of Euler-Rodrigues quaternion and the axial strain. In this way the 
boundary conditions can be described better and a significant influence of 
boundary conditions was found even for quite long beams (pipes). 
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